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ON MONOTONIC SOLUTIONS OF SOME INTEGRAL

EQUATIONS

J. CABALLERO(1), D. O’REGAN(2) AND K.B. SADARANGANI(1)

Abstract. The aim of this paper is to obtain monotonic solutions of an
integral equation of Urysohn-Stieltjes type in C[0, 1]. Existence will be es-
tablished with the aid of the measure of noncompactness.

1. Introduction

Integral equations arise naturally in applications of real world problems [5, 6,
7, 8]. The theory of integral equations has been well developed with the help
of various tools from functional analysis, topology and fixed-point theory. The
classical theory of integral equations can be generalized if one uses the Stieltjes
integral with kernels dependent on one or two variables. The aim of this paper is
to investigate the existence of monotonic solutions of so-called nonlinear integral
equation of Urysohn-Stieltjes type. Equations of such kind contain, among oth-
ers, the integral equation of Chandrasekhar which arises in radioactive transfer,
neutron transport and the kinetic theory of gases [5, 6, 7, 8].

2. Definitions, notations and facts

Assume E is a real Banach space with norm ‖ · ‖ and zero element θ. Denote
by B(x, r) the closed ball centered at x and with radius r and by Br the ball
B(θ, r). If X is a nonempty subset of E we denote by X and ConvX the closure
and the convex closed closure of X , respectively. Finally, let us denote by ME the
family of nonempty bounded subsets of E and by NE its subfamily consisting of
relatively compact sets.

Definition 1 (see [2]). A mapping µ : ME −→ [0,∞) is said to be a measure of
noncompactness in the space E if it satisfies the following conditions:

(1) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).
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(3) µ(X) = µ(ConvX) = µ(X).

(4) µ(λX + (1 − λ)Y ) ≤ λµ(X) + (1 − λ)µ(Y ) for λ ∈ [0, 1].

(5) If {Xn}n is a sequence of closed sets from ME such that Xn+1 ⊂ Xn for
n = 1, 2, · · · and limn→∞ µ(Xn) = 0 then

⋂∞
n=1Xn 6= ∅.

For properties of measures of noncompactness and results related to them we refer
the reader to [2].

In section 3 we will need the following fixed point principle (cf. [2]). This result
was formulated and proved first by Darbo (cf. [9]) in the case of the Kuratowski
measure of noncompactness (cf. [12]).

Theorem 1 ([2]). Let Q be a nonempty, bounded, closed and convex subset of the
Banach space E and µ a measure of noncompactness in E. Let F : Q −→ Q be
a continuous operator such that µ(FX) ≤ Kµ(X) for any nonempty subset of Q,
where K ∈ [0, 1) is a constant. Then F has a fixed point in the set Q.

Remark 1. Under the assumptions of Theorem 1 the set Fix F of fixed points of
F belonging to Q is a member of kerµ. In fact, as µ

(

F (Fix F )
)

= µ(Fix F ) ≤
Kµ(Fix F ) and 0 ≤ K < 1, we deduce that µ(Fix F ) = 0.

Consider the space C[0, 1] of all real functions defined and continuous on the
interval [0, 1] and equipped with the maximum norm

‖x‖ = sup{|x(t)| : t ∈ [0, 1]} .

For convenience, we write I = [0, 1] and C(I) = C[0, 1]. Next, we recall the
definition of a measure of noncompactness in C(I) which be used in section 3.
This measure was introduced and studied in [3]. Fix a nonempty and bounded
subsetX of C(I). For ε > 0 and x ∈ X denote by w(x, ε) the modulus of continuity
of x defined by

w(x, ε) = sup{|x(t) − x(s)| : t, s ∈ I, |t− s| ≤ ε} .

Furthermore put

w(X, ε) = sup {w(x, ε) : x ∈ X}

and

w0(X) = lim
ε→0

w(X, ε) .

Next, let us define the following quantities:

i(x) = sup {|x(s) − x(t)| − [x(s) − x(t)] : t, s ∈ I, t ≤ s}

and

i(X) = sup{i(x) : x ∈ X} .

Observe that i(X) = 0 if and only if all functions belonging to X are nondecreasing
on I.
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Finally, let

µ(X) = w0(X) + i(X) .

It can be see [3] that the function µ is a measure of noncompactness in the space
C(I). Moreover, the kernel kerµ consists of all sets X belonging to MC(I) such
that all functions from X are equicontinuous and nondecreasing on the interval I.

We now collect some auxiliary facts related to functions of bounded variation
and the Stieltjes integral. Let x be a given real function defined on the interval I.

The symbol
1

V
0
x will denote the variation of x on the interval I, defined by

1

V
0
x = sup

P

{

n
∑

i=1

|x(ti) − x(ti−1)| :
P = {0 = t0 < t1 < · · · < tn = 1}
is a partition of I

}

.

If
1

V
0
x is finite then we say that x is of bounded variation on I. Recall

a)
1

V
0
x =

1

V
0
(−x) b)

1

V
0
(x+ y) ≤

1

V
0
x+

1

V
0
y

c)
1

V
0
(x− y) ≤

1

V
0
x+

1

V
0
y d)

∣

∣

∣

1

V
0
x−

1

V
0
y
∣

∣

∣
≤

1

V
0
(x− y) .

For other properties of functions of bounded variation we refer the reader to the
monographs [10] and [13]. Let g(t, s) : I × I −→ R be a function, then the symbol
q

V
t=p

g(t, s) indicates the variation of the function t −→ g(t, s) on the interval [p, q] ⊂

I, where s is arbitrarily fixed in I. Similarly we define the quantity
q

V
s=p

g(t, s).

Now, let us assume that x, ϕ : I −→ R are bounded functions. Then, under some

extra conditions ([10], [13]), we can define the Stieltjes integral
∫ 1

0 x(t) dϕ(t) of the
function x with respect to the function ϕ. In this case, we say that x is Stieltjes
integrable on the interval I with respect to ϕ. Recall the following results related
to Stieltjes integrability (cf. [10], [13]). If x is continuous and ϕ is of bounded
variation on the interval I, then x is Stieltjes integrable with respect to ϕ on I.
Moreover, under the assumption that x and ϕ are of bounded variation on I, the

Stieltjes integral
∫ 1

0
x(t) dϕ(t) exists if and only if the functions x and ϕ have no

common points of discontinuity. Finally we recall a few properties of the Stieltjes
integral which will be used later. These properties are contained in the following
lemmas (cf. [10], [13]).

Lemma 1. If x is Stieltjes integrable on the interval I with respect to a function
ϕ of bounded variation then

∣

∣

∣

∫ 1

0

x(t) dϕ(t)
∣

∣

∣
≤

(

sup
0≤t≤1

|x(t)|
) 1

V
0
ϕ .

Moreover, the following inequality holds

∣

∣

∣

∫ 1

0

x(t) dϕ(t)
∣

∣

∣
≤

∫ 1

0

|x(t)|d
( t

V
0
ϕ
)

.
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Corollary 1. If x is Stieltjes integrable with respect to a nondecreasing function
ϕ then

∣

∣

∣

∫ 1

0

x(t) dϕ(t)
∣

∣

∣
≤

(

sup
0≤t≤1

|x(t)|
)

(

ϕ(1) − ϕ(0)
)

.

Lemma 2. Let x1, x2 be Stieltjes integrable functions on the interval I with respect
to a nondecreasing function ϕ and such that x1(t) ≤ x2(t) for t ∈ I. Then

∫ 1

0

x1(t) dϕ(t) ≤

∫ 1

0

x2(t) dϕ(t) .

Corollary 2. Let x be Stieltjes integrable function on the interval I with respect
to a nondecreasing function ϕ and such that x(t) ≥ 0 for all t ∈ I. Then

∫ 1

0

x(t) dϕ(t) ≥ 0 .

Lemma 3. Let ϕ1, ϕ2 be nondecreasing functions on I such that ϕ2 − ϕ1 is a
nondecreasing function. If x is Stieltjes integrable on I and x(t) ≥ 0 for t ∈ I then

∫ 1

0

x(t) dϕ1(t) ≤

∫ 1

0

x(t) dϕ2(t) .

We will also need later the Stieltjes integral of the form
∫ 1

0
x(s)dsg(t, s) where

g is a function of two variables, g : I × I −→ R, and the symbol ds indicates that
the integration is taken with respect to s.

3. Main result

In this section we will study the integral equation of Urysohn-Stieltjes type

(1) x(t) = a(t) + k x2(t) +

∫ 1

0

u
(

t, s, x(s)
)

dsg(t, s) , t ∈ I ;

here k ≥ 0. The functions a(t) and u(t, s, x) are given while x = x(t) is an unknown
function.

We will examine this equation under the following assumptions:

(i) a ∈ C(I) and it is a nonnegative and nondecreasing function on the inter-
val I.

(ii) g : I × I −→ R satisfies the following conditions:
(a) The function s −→ g(t, s) is a nondecreasing function on I for each

t ∈ I.
(b) For all t1, t2 ∈ I such that t1 < t2 the function s −→ g(t2, s)−g(t1, s)

is nondecreasing on I.
(c) The functions t −→ g(t, 0) and t −→ g(t, 1) are continuous on I.

(iii) u : I× I×R −→ R is continuous function such that u : I× I×R+ −→ R+

and for arbitrarily fixed s ∈ I and x ∈ R+ the function t −→ u(t, s, x) is
nondecreasing on I.

(iv) the function u verifies the following conditions:
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(a) There exists a continuous nondecreasing function ψ : [0,∞) −→
[0,∞) with |u(t, s, x)| ≤ ψ(|x|) for each x ∈ R and t, s ∈ I.

(b) For any M > 0 there exists a continuous nondecreasing function
φM : [0,∞) −→ [0,∞) with φM (0) = 0, such that for each s ∈ I,
x ∈ R with |x| ≤M and for all t1, t2 ∈ I, t1 < t2 we have

|u(t2, s, x) − u(t1, s, x)| ≤ φM (t2 − t1)

(v) There exists r0 > 0 with ‖a‖ + k r20 + Tψ(r0) ≤ r0 and 2r0 k < 1; here

T = sup

{

1

V
s=0

g(t, s) : t ∈ [0, 1]

}

(see Proposition 2 below).

Proposition 1. Assume that the function g : I × I −→ R satisfies (ii,b) and
(ii,c). Then for every ε > 0 there exists δ > 0 such that for t1, t2 ∈ I, t1 < t2 with
t2 − t1 ≤ δ we have

1

V
s=0

[g(t2, s) − g(t1, s)] ≤ ε

Proof. Take an arbitrary partition 0 = s0 < s1 < · · · < sn = 1 of the interval I.
Now assumption (ii,b) yields

n
∑

i=1

|[g(t2, si) − g(t1, si)] − [g(t2, si−1) − g(t1, si−1)]|

=

n
∑

i=1

([g(t2, si) − g(t1, si)] − [g(t2, si−1) − g(t1, si−1)])

= [g(t2, 1) − g(t1, 1)] − [g(t2, 0) − g(t1, 0)] .

Consequently

1

V
s=0

[g(t2, s) − g(t1, s)] = [g(t2, 1) − g(t1, 1)] − [g(t2, 0) − g(t1, 0)] .

Finally from assumption (ii,c) we obtain the desired result. �

Proposition 2. Assume that the function g : I× I −→ R satisfies (ii,b) and (ii,c)
and the function s −→ g(t, s) is of bounded variation on I for each t ∈ I. Then

the function t −→
1

V
s=0

g(t, s) is continuous on I.

Proof. Now assumptions (ii,b) and (ii,c) and Proposition 1 imply that for every
ε > 0 there exists δ > 0 such that for t1, t2 ∈ I, t1 < t2 with t2 − t1 ≤ δ we have

1

V
s=0

[g(t2, s) − g(t1, s)] ≤ ε .

Notice since s → g(t, s) is of bounded variation on I and
1

V
0
x =

1

V
0
(−x) (see

section 2), the inequality above is valid for | t1 − t2 |≤ δ. Also, since
∣

∣

∣

1

V
0
x−

1

V
0
y
∣

∣

∣
≤
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1

V
0
(x − y) (see section 2) we obtain

∣

∣

∣

1

V
s=0

g(t2, s) −
1

V
s=0

g(t1, s)
∣

∣

∣
≤

1

V
s=0

[g(t2, s) − g(t1, s)] ≤ ε .

Consequently the function t −→
1

V
s=0

g(t, s) is continuous on I. �

Remark 2. As every nondecreasing function is of bounded variation, in view of
Proposition 2 and the compactness of the interval I there exists a constant T > 0

such that
1

V
s=0

g(t, s) ≤ T for every t ∈ I if g satisfies (ii).

Next, we formulate our main result

Theorem 2. Under the assumptions (i)−(v) the integral equation (1) has at least
one solution x ∈ C(I) which is nondecreasing on I.

Proof. Let r0 be chosen as in (v). Let M : [0,∞) −→ [0,∞) be

M(ε) = sup
{ 1

V
s=0

[

g(t2, s) − g(t1, s)
]

: t1, t2 ∈ I, t1 ≤ t2, t2 − t1 ≤ ε
}

.

Now Proposition 1 implies M(ε) → 0 as ε → 0. Consider the operator A defined
on C(I) by

(2) (Ax)(t) = a(t) + k x2(t) +

∫ 1

0

u
(

t, s, x(s)
)

ds g(t, s) .

First we show that if x ∈ C(I) then Ax ∈ C(I). For this it is sufficient to show
that if x ∈ C(I) then Bx ∈ C(I) where

(Bx)(t) =

∫ 1

0

u
(

t, s, x(s)
)

ds g(t, s) .

Fix ε > 0 and take t1, t2 ∈ I with t1 ≤ t2 and t2 − t1 ≤ ε. Let x ∈ C(I) so there
exists M > 0 with ‖x‖ ≤M . Then our assumptions and Lemma 1 yield

|(Bx)(t2) − (Bx)(t1)| =
∣

∣

∣

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)
∣

∣

∣

≤
∣

∣

∣

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t2, s)
∣

∣

∣

+
∣

∣

∣

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)
∣

∣

∣

≤

∫ 1

0

∣

∣u
(

t2, s, x(s)
)

− u
(

t1, s, x(s)
)∣

∣ds

( s

V
p=0

g(t2, p)
)

+

∫ 1

0

∣

∣u
(

t1, s, x(s)
)∣

∣ds

( s

V
p=0

(

g(t2, p) − g(t1, p)
)

)

≤ φM (t2 − t1)
1

V
p=0

g(t2, p) + ψ(‖x‖)
1

V
p=0

(

g(t2, p) − g(t1, p)
)

≤ φM (ε) · T + ψ(‖x‖)M(ε) .
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Thus, we obtain the following estimate:

w(Bx, ε) ≤ φM (ε) · T + ψ(‖x‖)M(ε) .

Now w(Bx, ε) → 0 as ε→ 0 so Bx ∈ C(I).
Next, we show that A is a continuous operator. In order to prove this result it

is sufficient to show the continuity of the operator B. Fix ε > 0 and let x ∈ C(I).
Next let y ∈ C(I) with ‖x− y‖ ≤ ε. Then, for fixed t ∈ I we have

|(Bx)(t) − (By)(t)| =
∣

∣

∣

∫ 1

0

u
(

t, s, x(s)
)

dsg(t, s) −

∫ 1

0

u
(

t, s, y(s)
)

dsg(t, s)
∣

∣

∣

≤

∫ 1

0

|u
(

t, s, x(s)
)

− u
(

t, s, y(s)
)

|ds

( s

V
p=0

g(t, p)
)

≤ β(ε)
1

V
p=0

g(t, p) ≤ β(ε) · T

where β(ε) is given by

β(ε) = sup
{

|u(t, s, y)−u(t, s, y′)| t, s ∈ I , y, y′ ∈ [−‖x‖−ε, ‖x‖+ε], |y−y′| ≤ ε
}

.

From the uniform continuity of the function u(t, s, x) on the set I × I × [−‖x‖ −
ε, ‖x‖+ε] we have that β(ε) → 0 as ε→ 0. This fact and the last inequality prove
that the operator B is continuous and consequently the operator A is continuous.
Thus A transforms the space C(I) into itself. Next assumption (iv) yields

|(Ax)(t)| =
∣

∣

∣
a(t) + kx2(t) +

∫ 1

0

u
(

t, s, x(s)
)

dsg(t, s)
∣

∣

∣

≤ ‖a‖ + k‖x‖2 +

∫ 1

0

|u
(

t, s, x(s)
)

|ds

( s

V
p=0

g(t, p)
)

≤ ‖a‖ + k‖x‖2 + ψ(‖x‖)
1

V
p=0

g(t, p)

≤ ‖a‖ + k‖x‖2 + ψ(‖x‖) · T .

Thus if ‖x‖ ≤ r0 we obtain from (v) that

(3) ‖Ax‖ ≤ ‖a‖ + kr20 + ψ(r0) · T ≤ r0 .

As a result A transforms the ball B(0, r0) into itself.
Consider the operator A on the subset B+

r0
of the ball Br0

defined by

B+
r0

= {x ∈ Br0
: x(t) ≥ 0 for t ∈ I} .

Obviously, the set B+
r0

is nonempty, bounded, closed and convex. Let x ∈ B+
r0

.
Notice that in view of our assumptions (i) and (iii) if x(t) ≥ 0 for t ∈ I then
(Ax)(t) ≥ 0 for t ∈ I. Thus A transforms the set B+

r0
into itself. Moreover, A is

continuous on B+
r0

⊂ C(I). Let X be a nonempty subset of B+
r0

. Fix ε > 0 and
choose x ∈ X and t1, t2 ∈ I such that |t2 − t1| ≤ ε. Without loss of generality we
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may assume that t1 ≤ t2. Notice

|(Ax)(t2) − (Ax)(t1)| =
∣

∣

∣
a(t2) + kx2(t2) +

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s)

− a(t1) − kx2(t1) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)
∣

∣

∣

≤ |a(t2) − a(t1)| + k|x(t2) − x(t1)| |x(t2) + x(t1)|

+
∣

∣

∣

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t2, s)
∣

∣

∣

+
∣

∣

∣

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)
∣

∣

∣

≤ w(a, ε) + 2r0 kw(x, ε)

+

∫ 1

0

∣

∣u
(

t2, s, x(s)
)

− u
(

t1, s, x(s)
)∣

∣ds

( s

V
p=0

g(t2, p)
)

+

∫ 1

0

∣

∣u
(

t1, s, x(s)
)∣

∣ds

( s

V
p=0

(

g(t2, p) − g(t1, p)
)

)

≤ w(a, ε) + 2r0 kw(x, ε) + φr0
(t2 − t1)

1

V
p=0

g(t2, p)

+ ψ(‖x‖)
( 1

V
p=0

(

g(t2, p) − g(t1, p)
)

)

≤ w(a, ε) + 2r0 kw(x, ε) + T · φr0
(ε) + ψ(r0)M(ε) .

Hence,

w(Ax, ε) ≤ w(a, ε) + 2r0 kw(x, ε) + T · φr0
(ε) + ψ(r0)M(ε) .

Thus

sup
x∈X

w(Ax, ε) ≤ w(a, ε) + 2r0 k · sup
x∈X

w(x, ε) + T · φr0
(ε) + ψ(r0)M(ε)

so let ε→ 0 to obtain

(4) w0(AX) ≤ 2r0 k · w0(X) .

Let x ∈ X and t1, t2 ∈ I, t1 ≤ t2. Then

|(Ax)(t2) − (Ax)(t1)| − [(Ax)(t2) − (Ax)(t1)]

=
∣

∣

∣
a(t2) + kx2(t2) +

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s)

− a(t1) − kx2(t1) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)
∣

∣

∣
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−
[

a(t2) + kx2(t2) +

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s)

− a(t1) − kx2(t1) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)
]

≤ |a(t2) − a(t1)| − [a(t2) − a(t1)]

+ k
(

|x(t2) − x(t1)| − [x(t2) − x(t1)]
)

[x(t2) + x(t1)]

+
∣

∣

∣

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)
∣

∣

∣

−
[

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)
]

≤ 2r0 k · i(x) +
∣

∣

∣

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)
∣

∣

∣

−
[

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)
]

.(5)

We next prove that
∫ 1

0
u
(

t2, s, x(s)
)

ds g(t2, s) −
∫ 1

0
u(t1, s, x(s))dsg(t1, s) ≥ 0.

In fact notice
∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)

=

∫ 1

0

u
(

t2, s, x(s) =
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t2, s)

+

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s) .(6)

Moreover,
∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t2, s)

=

∫ 1

0

[

u
(

t2, s, x(s)
)

− u
(

t1, s, x(s)
)]

dsg(t2, s)

so assumption (iii) and Corollary 2 yield

(7)

∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t2, s) ≥ 0 .

On the other hand,
∫ 1

0

u
(

t1, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s)

=

∫ 1

0

u
(

t1, s, x(s)
)

ds

(

g(t2, s) − g(t1, s)
)

.



334 J. CABALLERO, D. O’REGAN AND K. B. SADARANGANI

Moreover, we have that g(t2, s)− g(t1, s) is a nondecreasing function
(

assumption

(ii-b)
)

, u(t1, s, x) ≥ 0
(

assumption (iii)
)

and g(t2, s), g(t1, s) are nondecreasing

functions
(

assumption (ii-a)
)

. From these facts and Lemma 3 we deduce that

(8)

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s) ≥ 0 .

Now (6), (7) and (8) imply
∫ 1

0

u
(

t2, s, x(s)
)

dsg(t2, s) −

∫ 1

0

u
(

t1, s, x(s)
)

dsg(t1, s) ≥ 0 .

This together with (5) yields

i(Ax) ≤ 2r0 k · i(x)

and so

(9) i(AX) ≤ 2r0 k · i(X) .

Finally, combining (4) and (9) we get

µ(AX) ≤ 2r0 k · µ(X) .

Now, Theorem 1 guarantees that there exists x ∈ B+
r0

a solution of (1). Also, such
a solution is nondecreasing in view of Remark 1 and the definition of the measure
of noncompactness µ given in section 2. �

Remark 3. Suppose k = 0 and there exist c, d ≥ 0 with ψ(x) = c + dx with
dT < 1 then it is easy to see that there exists r0 > 0 with ‖a‖ + (c+ dr0)T ≤ r0.

Remark 4. The result in Theorem 2 holds for the integral equation

x(t) = a(t) + kxn(t) +

∫ 1

0

u
(

t, s, x(s)
)

ds g(t, s)

with n ∈ {1, 2, . . .} provided assumption (v) is changed to: There exists r0 > 0
with ‖a‖ + k rn

0 + T ψ(r0) ≤ r0 and n rn−1
0 k < 1. Note the case n = 1 is easier

since we can rewrite the equation as

x(t) =
1

1 − k
a(t) +

1

1 − k

∫ 1

0

u
(

t, s, x(s)
)

ds g(t, s) .

4. Remarks and Examples

First we discuss assumption (ii-a). Notice we cannot replace (ii-a) with the
function s −→ g(t, s) is of bounded variation on I. In fact, if we take g(t, s) = e−s,
it is easy to show that this function is decreasing and consequently is of bounded
variation. Moreover, if we take a(t) = 0 and u(t, s, x) = 1, the integral equation
(with k = 0) has the form

x(t) =

∫ 1

0

dsg(t, s) =

∫ 1

0

−se−sds ≤ 0.

Therefore, the operator A defined in the proof of Theorem 2 will not transform
the set B+

r0
into itself.
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Next, we give some examples of functions g(t, s) which verify the assumptions
of Theorem 2.

Example 1. Let us take a function p : I × I −→ R+ which is bounded and
integrable. Then, we consider the function g(t, s) defined by

g(t, s) =

∫ s

0

(

∫ t

0

p(z, v) dv
)

dz .

Now, we show this function satisfies the assumptions of Theorem 2.

(ii-a) Fix t ∈ [0, 1] and take s1, s2 ∈ I such that s1 < s2. Now p ≥ 0 yields
∫ s2

0

(

∫ t

0

p(z, v) dv
)

dz ≥

∫ s1

0

(

∫ t

0

p(z, v) dv
)

dz

and consequently, the function s −→ g(t, s) is nondecreasing for each t ∈
[0, 1].

(ii-b) Take t1, t2 ∈ I such that t1 < t2. Then the function s −→ g(t2, s)−g(t1, s)
is nondecreasing. In fact, if we take s1, s2 ∈ I such that s1 < s2 we obtain

(

g(t2, s2) − g(t1, s2)
)

−
(

g(t2, s1) − g(t1, s1)
)

=

∫ s2

0

(

∫ t2

0

p(z, v) dv
)

dz −

∫ s2

0

(

∫ t1

0

p(z, v) dv
)

dz

−

∫ s1

0

(

∫ t2

0

p(z, v) dv
)

dz +

∫ s1

0

(

∫ t1

0

p(z, v) dv
)

dz

=

∫ s2

0

(

∫ t2

t1

p(z, v) dv
)

dz −

∫ s1

0

(

∫ t2

t1

p(z, v) dv
)

dz

=

∫ s2

s1

(

∫ t2

t1

p(z, v) dv
)

dz ≥ 0 .

(ii-c) If s = 0 then

g(t, 0) =

∫ 0

0

(

∫ t

0

p(z, v) dv
)

dz = 0 ,

so the function t −→ g(t, 0) is continuous. We next claim the function

t −→ g(t, 1) =

∫ 1

0

(

∫ t

0

p(z, v) dv
)

dz

is continuous. Fix ε > 0 and t0 ∈ I. Then there exists δ = ε
‖p(z,v)‖ > 0

(where ‖p(z, v)‖ = sup{|p(z, v)| : p, v ∈ I}) such that if t ∈ I, |t− t0| ≤ δ

and t0 ≤ t then

|g(t, 1) − g(t0, 1)| =
∣

∣

∣

∫ 1

0

(

∫ t

0

p(z, v) dv
)

dz −

∫ 1

0

(

∫ t0

0

p(z, v) dv
)

dz
∣

∣

∣

=
∣

∣

∣

∫ 1

0

(

∫ t

t0

p(z, v) dv
)

dz
∣

∣

∣
≤

∫ 1

0

(

∫ t

t0

|p(z, v)| dv
)

dz

≤ ‖p(z, v)‖(t− t0) ≤ ‖p(z, v)‖ · δ ≤ ε .
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Therefore, the function t −→ g(t, 1) is continuous.

These facts imply that the function g(t, s) =
∫ s

0

(

∫ t

0 p(z, v) dv
)

dz satisfies as-

sumption (ii). In this case, dsg(t, s) =
∫ t

0
p(s, v) ds and the integral equation has

the following form

(10) x(t) = a(t) + k x2(t) +

∫ 1

0

u
(

t, s, x(s)
)

(

∫ t

0

p(s, v) dv
)

ds

which is an integral equation of Hammerstein type.
Note if we take suitable functions a(t) and u(t, s, x) (which satisfy the assump-

tions of Theorem 2) then the integral equation (10) has a nondecreasing solution
on C(I).

Example 2. Let us take the function g : I × I −→ R defined by

g(t, s) =

{

t · ln
(

t+s
t

)

for t ∈ (0, 1], s ∈ [0, 1]

0 for t = 0, s ∈ [0, 1] .

We easily see that the function s −→ g(t, s) in nondecreasing for each t ∈ [0, 1]. In
order to prove that g(t, s) satisfies assumption (ii,b) and (ii,c), we fix t1, t2 ∈ [0, 1],
t1 ≤ t2 and we obtain

g(t2, s) − g(t1, s) =

{

t2 · ln
(

t2+s
t2

)

for t1 = 0

t2 · ln
(

t2+s
t2

)

− t1 · ln
(

t1+s
t1

)

for t1 > 0 .

It is clear that the function s −→ g(t2, s) − g(t1, s) is nondecreasing on the inter-
val [0, 1]. Moreover the functions g(t, 0) and g(t, 1) are continuous on [0, 1]. As

dsg(t, s) =
t

t+ s
the integral equation (1) has the form

x(t) = a(t) + k x2(t) +

∫ 1

0

u
(

t, s, x(s)
) t

t+ s
ds

which is related to the Chandrasekhar equation [5, 6, 7, 8]. If we take suitable
functions a(t) and u(t, s, x) then by Theorem 2 we know this integral equation has
a nondecreasing solution on C(I).

Example 3. Consider the following integral equation

(11) x(t) = t2 + 2t+ 1 +
1

e

∫ 1

0

s
(

t+ ln(1 + |x(s)|)
)

ds

(

ets
)

.

Here a(t) = t2 + 2t + 1 which is continuous, nonnegative and bounded on the
interval I. Thus, the function a satisfies assumption (i). Moreover, the function
g(t, s) is defined by g(t, s) = ets. Now, we will prove that this function satisfies
assumption (ii).

(ii-a) Fix t ∈ I. The function s −→ g(t, s) = ets is nondecreasing on I. In fact,

d

ds

(

ets
)

= tets ≥ 0 , t, s ∈ I .
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(ii-b) For all t1, t2 ∈ I such that t1 < t2 the function s −→ et2s − et1s is
nondecreasing. In fact,

d

ds

(

et2s − et1s
)

= t2e
t2s − t1e

t1s > 0 .

(ii-c) The functions t −→ g(t, 0) = 1 and t −→ g(t, 1) = et are continuous.

Consequently, the function g(t, s) = ets satisfies assumption (ii). If u(t, s, x) is
given by

u(t, s, x) =
1

e
s
(

t+ ln(1 + |x|)
)

,

then assumptions (iii) and (iv) of Theorem 2 are satisfied. Clearly u(t, s, x) is a
continuous function such that u : I × I × R+ −→ R+. Moreover for fixed s ∈ I

and x ∈ R+ the function t −→ u(t, s, x) is nondecreasing on I. In fact,

d

dt

(1

e
s
(

t+ ln(1 + |x|)
)

)

=
1

e
s ≥ 0 ,

so the function u satisfies (iii).
Also we have the following estimate

|u(t, s, x)| =
∣

∣

∣

s

e

(

t+ ln(1 + |x|)
)

∣

∣

∣
≤

1

e

(

t+ ln(1 + |x|)
)

≤
1

e
(1 + |x|) =

1

e
+

|x|

e
.

Therefore, u(t, s, x) satisfies (iv-a) with ψ(x) = c+ dx and c = d = 1
e
.

Finally, for each s ∈ I, x ∈ R and for all t2, t1 ∈ I, t1 < t2, we have

|u(t2, s, x) − u(t1, s, x)| =
∣

∣

∣

1

e
s
(

t2 + ln(1 + |x|)
)

−
1

e
s
(

t1 + ln(1 + |x|)
)

∣

∣

∣

=
s

e
(t2 − t1) ≤

1

e
(t2 − t1) .

In view of the last inequality we can deduce that u(t, s, x) satisfies assumption
(iv-b). Now

T = sup
{ 1

V
s=0

g(t, s) : t ∈ [0, 1]
}

= sup{et − 1 : t ∈ [0, 1]} = e− 1 ,

so d · T = 1
e
· (e− 1) < 1.

As a result the assumptions of Theorem 2 (see Remark 3) are satisfied. Thus,
this integral equation has a nondecreasing solution in C(I).
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