ARCHIVUM MATHEMATICUM (BRNO) Tomus 41 (2005), 273 – 280

ON THE DEGENERATION OF HARMONIC SEQUENCES FROM SURFACES INTO COMPLEX GRASSMANN MANIFOLDS

WU BING YE

ABSTRACT. Let $f: M \to G(m, n)$ be a harmonic map from surface into complex Grassmann manifold. In this paper, some sufficient conditions for the harmonic sequence generated by f to have degenerate ∂' -transform or ∂'' -transform are given.

1. INTRODUCTION

Let G(m, n) be the Grassmann manifold of all *m*-dimensional subspaces C^m in complex space C^n , M be a connected Riemannian surface. Given a harmonic map $f: M \to G(m, n)$, Chern-Wolfson obtain the following sequence of harmonic maps by using the ∂' -transforms and ∂'' -transforms:

(1.1)
$$f = f_0 \xrightarrow{\partial'} f_1 \xrightarrow{\partial'} \cdots \xrightarrow{\partial'} f_\alpha \xrightarrow{\partial'} \cdots,$$
$$f = f_0 \xrightarrow{\partial''} f_{-1} \xrightarrow{\partial''} \cdots \xrightarrow{\partial''} f_{-\alpha} \xrightarrow{\partial''} \cdots,$$

(1.1) is called the harmonic sequence generated by $f = f_0$. It is important to ask when the harmonic sequence (1.1) includes degenerate ∂' -transform or ∂'' -transform. If m = 1, then the degeneration of ∂' -transform or ∂'' -transform is equivalent to the isotropy of f. We know that the harmonic sequence (1.1) must have degenerate ∂' -transform or ∂'' -transform for an arbitrary harmonic map $f : M \to G(m, n)$ if one of the following conditions holds:

- (i) g = 0, i.e., M is homeomorphic to the 2-sphere S^2 [2];
- (ii) g = 1 and $\deg(f) \neq 0$ [2];
- (iii) $m = 1, |\deg(f)| > (n-1)(g-1)[3, 4];$
- (iv) m = 1, $r(\partial'_0) + r(\partial''_0) > 2n(g-1)$ [4, 5]; where g denotes the genus of M, deg(f) is the degree of the map and $r(\partial'_0)$ and $r(\partial''_0)$ are the ramification indices of ∂'_0 and ∂''_0 respectively.

¹⁹⁹¹ Mathematics Subject Classification: 53C42, 53B30.

Key words and phrases: complex Grassmann manifold, harmonic map, harmonic sequence, genus, the generalized Frenet formulae.

Received October 13, 2003.

B. Y. WU

So far have we known above sufficient conditions to guarantee the existence of degenerate ∂' -transform or ∂'' -transform, but when m > 1 and g > 1 or when M is non-compact, it seems that there aren't any results about it. The main purpose of the present paper is to find some sufficient conditions to ensure the existence of degenerate ∂' -transform or ∂'' -transform. In order to do this, we establish the generalized Frenet formulae for harmonic maps and then use it to obtain some relative results.

2. HARMONIC SEQUENCES

We equip C^n with the standard Hermitian inner product \langle , \rangle , so that, for any two column vectors $X, Y \in C^n$, $\langle X, Y \rangle = Y^*X$, where Y^* denotes the conjugate and transpose of Y.

Let M be a connected Riemannian surface with Riemannian metric $ds_M^2 = \varphi \overline{\varphi}$, where φ is a complex-valued 1-form defined up to a factor of norm one. The structure equations of M are

(2.1)
$$d\varphi = -\sqrt{-1}\rho \wedge \varphi, \qquad d\rho = -\frac{\sqrt{-1}}{2}K\varphi \wedge \overline{\varphi},$$

where ρ is the real connection 1-form of M, and K the Gaussian curvature of M. Let $f: M \to G(m, n)$ be a harmonic map. Choose a local unitary frame Z_1, \ldots, Z_n along f suitably such that Z_1, \ldots, Z_m span f. We write

(2.2)
$$dZ_i = X_i \varphi + Y_i \overline{\varphi} \mod f$$

where $X_i, Y_i \in f^{\perp}, i = 1, ..., m$. It follows from [1] that except at isolated points the ranks of span $\{X_1, \ldots, X_m\}$ and span $\{Y_1, \ldots, Y_m\}$ are constant, and they define two harmonic maps $f_1 = \partial' f : M \to G(m_1, n)$ and $f_{-1} : M \to G(m_{-1}, n)$, where m_1 and m_{-1} are the ranks of span $\{X_1, \ldots, X_m\}$ and span $\{Y_1, \ldots, Y_m\}$ respectively. Repeating in this way, we can get the harmonic sequence (1.1), where $f_{\pm \alpha} : M \to G(m_{\pm \alpha}, n)$. If $m_{\alpha} > m_{\alpha+1}$, then the ∂' -transform of f_{α} is called degenerate. Similarly, when $m_{-\alpha} > m_{-\alpha-1}$, then the ∂'' -transform of $f_{-\alpha}$ is called degenerate. In order to avoid confusion, sometimes we denote the ∂' -transform and ∂'' -transform of f_k by ∂'_k and ∂''_k respectively, $k = 0, \pm 1, \ldots$ If $f_{-1} \pm f_1$ then $f = f_0$ is called strongly conformal [6]. If for any $\alpha > 0$, $f_{\alpha} \neq 0$, then the number

(2.3)
$$r = \max\{j : f_0 \perp f_i, \forall 1 \le i \le j\}$$

must be finite, and it is called the isotropy order of f [6]. It is known that when $\partial'_k \neq 0$ or $\partial''_k \neq 0$, then ∂'_k or ∂''_k has only isolated zeros, $k = 0, \pm 1, \ldots$ Hence, when M is compact, the number of zeros of ∂'_k or ∂''_k , counted according to multiplicity, is finite which is called the ramification index of ∂'_k or ∂''_k , and will be denoted by $r(\partial'_k)$ or $r(\partial''_k)$.

From [6] we know that there is a one-to-one correspondence between smooth map $f: M \to G(m, n)$ and the subbundle \underline{f} of the trivial bundle $M \times C^n$ of rank m which has fiber at $x \in M$ given by $\underline{f_x} = f(x)$. Therefore, we can identify f with the Hermitian orthogonal projection from $M \times C^n$ onto \underline{f} . From this point of view, we have

Lemma 2.1 ([7]). Let $f: M \to G(m,n) \subset U(n)$ be a smooth map. Then f is harmonic if and only if d * A = 0, where $A = \frac{1}{2}s^{-1}ds$, $s = f - f^{\perp}$.

For the harmonic sequence (1.1), let $Z_1^{(k)}, \ldots, Z_{m_k}^{(k)}$ be the local unitary frame for $\underline{f_k}, k = 0, \pm 1, \ldots$ Then the Hermitian orthogonal projection f_k can be expressed by

$$(2.4) f_k = W_k W_k^*$$

where $W_k = (Z_1^{(k)}, \ldots, Z_{m_k}^{(k)})$ is the $(n \times m_k)$ -matrix.

3. The generalized Frenet formulae

Let $f = f_0 : M \to G(m, n)$ be a harmonic map which generates the harmonic sequence (1.1). The exterior derivative d has the decomposition $d = \partial + \overline{\partial}$. From [6] we see that $\partial'(\partial'' \underline{f_k}) \subset \underline{f_k}$ and $\partial''(\partial' \underline{f_k}) \subset \underline{f_k}$, $k = 0, \pm 1, \ldots$ Hence, locally there exist $(m_k \times m_k)$ -matrices $B_k, D_k, (m_{k+1} \times m_k)$ -matrix A_k and $(m_{k-1} \times m_k)$ -matrix C_k so that

$$\partial W_k = (W_{k+1}A_k + W_k B_k)\varphi,$$

$$\overline{\partial} W_k = (W_{k-1}C_k + W_k D_k)\overline{\varphi}.$$

By the construction of the harmonic sequence (1.1), we have $\underline{f_k} \perp \underline{f_{k+1}}$ and so $W_k W_k^* = I_{m_k}$ and $W_k W_{k+1}^* = 0$. Operating $\overline{\partial}$ on them we obtain $B_k + D_k^* = 0$ and $A_k^* + C_{k+1} = 0$. Consequently we get the following generalized Frenet formulae:

(3.1)
$$\partial W_k = (W_{k+1}A_k + W_k B_k)\varphi, \overline{\partial} W_k = -(W_{k-1}A_{k-1}^* + W_k B_k^*)\overline{\varphi}.$$

Since rank($\underline{f_k}$) is constant for each k except at isolated points, A_k is of full rank except at these isolated points. When f is an isometric immersion, we have [8]

(3.2)
$$|A_0|^2 + |A_{-1}|^2 = 1, \quad \cos \alpha = |A_0|^2 - |A_{-1}|^2,$$

here the norm |Q| of a matrix Q is defined by $|Q|^2 = \operatorname{tr}(QQ^*)$ in a standard manner, and α is the Kaehler angle of f.

Lemma 3.1. In the generalized Frenet formulae (3.1), we have

(3.3)
$$dA_{k} + (A_{k}B_{k}^{*} - B_{k+1}^{*}A_{k})\overline{\varphi} - \sqrt{-1}\rho A_{k} \equiv 0 \mod \varphi, d(B_{k}^{*}\overline{\varphi}) - d(B_{k}\varphi) = (A_{k}^{*}A_{k} - A_{k-1}A_{k-1}^{*} + B_{k}^{*}B_{k} - B_{k}B_{k}^{*})\varphi \wedge \overline{\varphi}.$$

Proof. Set $s_k = f_k - f_k^{\perp}$, $A^{(k)} = \frac{1}{2}s_k^{-1}ds_k$. Thus $A^{(k)}$ is one half of the pull-back of Maurer- Cartan form of U(n) by f_k , and it satisfies

(3.4)
$$dA^{(k)} + 2A^{(k)} \wedge A^{(k)} = 0.$$

From Lemma 2.1. we see that

(3.5)
$$d * A^{(k)} = 0.$$

B. Y. WU

On the other hand, by virtue of (2.4), (3.1) and the definition of $A^{(k)}$ we get

(3.6)
$$A^{(k)} = (-W_{k+1}A_kW_k^* - W_kA_{k-1}W_{k-1}^*)\varphi + (W_kA_k^*W_{k+1}^* + W_{k-1}A_{k-1}^*W_k^*)\overline{\varphi}$$

Combining (3.4)–(3.6) one can obtain (3.3)₁. Substituting (3.1) into $W_k^* d^2 W_k = 0$ yields (3.3)₂.

Lemma 3.2. If $m_k = m_{k+1}$, then at points where det $A_k \neq 0$, we have

(3.7)
$$\Delta \log |\det A_k| = m_k K + 2(|A_{k-1}|^2 - 2|A_k|^2 + |A_{k+1}|^2).$$

Moreover, if M is a compact surface with genus g, then

(3.8)
$$r(\det A_k) = 2m_k(g-1) + \deg(f_k) - \deg(f_{k+1}),$$

where $r(\det A_k)$ denotes the number of zeros of det A_k counted according to multiplicity.

Proof. Note that $d \log(\det A_k) = \operatorname{tr}(A_k^{-1} dA_k)$, by $(3.3)_1$ we get

(3.9)
$$d\log(\det A_k) + \operatorname{tr}(B_k^* - B_{k+1}^*)\overline{\varphi} - \sqrt{-1}m_k\rho \equiv 0 \mod \varphi.$$

A standard computation together with $(3.3)_2$ and (3.9) yields (3.7). Integrating (3.7) on M and using Lemma 4.1 of [9], the Gauss-Bonnet theorem together with the definition of deg (f_k) and deg (f_{k+1}) [2] we finally get (3.8).

4. The main results

In this section we shall study the sufficient conditions to ensure the existence of degenerate ∂' -transform or ∂'' -transform in harmonic sequence (1.1). First we have

Theorem 4.1. Let M be a connected and complete Riemannian surface with nonnegative Gaussian curvature K and $f: M \to G(m, n)$ be a harmonic isometric immersion. If there exists a positive number $\varepsilon > 0$ so that $|\cos \alpha| \ge \varepsilon$, where α is the Kaehler angle of the immersion f, then at least one of the ∂' -transforms or ∂'' -transforms in harmonic sequence (1.1) generated by f is degenerate.

Proof. Suppose that under the conditions of the theorem, none of the ∂' -transforms and ∂'' -transforms in (1.1) generated by f is degenerate, that is to say, $m = m_0 = m_{\pm 1} = \ldots$ Equivalently speaking, square matrices $A_0, A_{\pm 1}, \ldots$ are all non-singular. Without loss of generality, we may assume that $\cos \alpha \geq \varepsilon > 0$. Then, for any positive integer p, a direct computation together with (3.2) and (3.7) yields (c.f. [8])

(4.1)
$$\Delta \log \prod_{k=-1}^{-p} \prod_{j=-1}^{k} |\det A_j|$$

= $\frac{1}{2} mp(p+1)K + (2p+1)\cos\alpha - 1 + 2|A_{-p-1}|^2$.

Since $\cos \alpha \ge \varepsilon > 0$, we can choose p such that $(2p+1)\cos \alpha - 1 > 0$. Thus from (4.1) we conclude that

(4.2)
$$\Delta \log \prod_{k=-1}^{-p} \prod_{j=-1}^{k} |\det A_j| > 0,$$

from which it follows that the function

$$\prod_{k=-1}^{-p} \prod_{j=-1}^{k} |\det A_j|$$

is a subharmonic function on a complete surface M with non-negative Gaussian curvature, and it must be a constant. But this is in contradiction with (4.2). So the theorem is proved.

Corollary 4.2. Let $f: M \to CP^n$ be an isometric minimal immersion of a complete and connected surface M with non-negative Gaussian curvature into CP^n . If the Kaehler angle α of the immersion f satisfies $|\cos \alpha| \ge \varepsilon$, where ε is a positive number, then f must be isotropy.

Proposition 4.3. Let $f: M \to G(m, (p+1)m)$ be a harmonic map of a compact surface with genus g into G(m, (p+1)m). If none of the ∂' -transforms and ∂'' -transforms in harmonic sequence (1.1) generated by f is degenerate, and the isotropy order of f is p. Then $|\deg(f)| \leq mp(g-1)$.

Proof. It is easy to see that under the assumption of the proposition, $\underline{f_0}, \underline{f_1}, \ldots, \underline{f_p}$ are mutually orthogonal, and that $\underline{f_k} = \underline{f_{k+p+1}}, k = 0, \pm 1, \ldots$ Therefore, from the definition of deg(·) it is clear that

(4.3)
$$\sum_{k=0}^{p} \deg(f_k) = 0,$$

from which together with (3.8) yields

p

(4.4)
$$\sum_{k=0}^{p} r(\det A_k) = 2m(g-1)(p+1),$$
$$\sum_{k=0}^{p} (p-k)r(\det A_k) = (p+1)\deg(f_0) + mp(p+1)(g-1),$$
$$\sum_{k=0}^{p} kr(\det A_k) = -(p+1)\deg(f_0) + mp(p-1)(g-1).$$

From (4.4) we get

$$|\deg(f)| = |\deg(f_0)| = \frac{1}{2} \Big| \sum_{k=0}^{p} \Big(\frac{p-2k}{p+1} \Big) \operatorname{r}(\det A_k) \Big|$$

$$\leq \frac{1}{2} \sum_{k=0}^{p} \Big(\Big| \frac{p-2k}{p+1} \Big| \operatorname{r}(\det A_k) \Big) \leq \frac{p}{2(p+1)} \sum_{k=0}^{p} \operatorname{r}(\det A_k) = mp(g-1) \Big|.$$

Thus the proposition is proved.

The following two theorems are the direct consequences of Proposition 4.3.

Theorem 4.4. Let $f: M \to G(m, 2m)$ be a harmonic map of a compact surface M with genus g into G(m, 2m). If $|\deg(f)| > m(g-1)$, then at least one of the ∂' -transforms or ∂'' -transforms in (1.1) is degenerate.

Theorem 4.5. Let $f: M \to G(m, 3m)$ be a strongly conformal harmonic map of a compact surface M with genus g into G(m, 3m). If $|\deg(f)| > 2m(g-1)$, then at least one of the ∂' -transforms or ∂'' -transforms in (1.1) is degenerate.

Remark. Theorem 4.5 generalizes Proposition 7.8 of [10].

Now let M be a compact surface with genus g and $f: M \to G(m, n)$ be a harmonic map which generates (1.1) with non-degenerate ∂' -transforms and ∂'' -transforms. This implies that $m = m_0 = m_{\pm 1} = \dots$ Suppose that the isotropy order of f is p so that

(4.5)
$$W_{k+i+1}^*W_k = 0, \qquad 0 \le i \le p-1, W_{k+n+1}^*W_k \ne 0,$$

here $k = 0, \pm 1, ...$ Set $P_k = W_{k+p+1}^* W_k$, then from (3.1) and (4.5) we get

(4.6)
$$A_{k+p}^* P_k = P_{k-1} A_{k-1}^*, \qquad \partial P_k = (P_k B_k - B_{k+p+1} P_k) \varphi$$

It follows from (4.6) that $\operatorname{rank}(P_0)=\operatorname{rank}(P_{\pm 1})=\ldots$ except at isolated points. Thus we can choose the local frame $W_k, k=0,1,\ldots,2p+1$ suitably such that

(4.7)
$$P_k = \begin{pmatrix} Q_k & 0\\ 0 & 0 \end{pmatrix}, \qquad k = 0, 1, \dots, p,$$

where Q_k 's are non-singular $(t \times t)$ -matrices except at isolated points, and $t = \operatorname{rank}(P_0) = \operatorname{rank}(P_1) = \ldots$ Assume the corresponding blocks of the matrices A_k and B_k are

(4.8)
$$A_k = \begin{pmatrix} A_{k11} & A_{k12} \\ A_{k21} & A_{k22} \end{pmatrix}, \qquad B_k = \begin{pmatrix} B_{k11} & B_{k12} \\ B_{k21} & B_{k22} \end{pmatrix}.$$

Combining (4.6)–(4.8) it follows that

(4.9)
$$\begin{aligned} A_{k21} &= 0, & 0 \le k \le p - 1, \\ B_{k12} &= 0, & 0 \le k \le p, \\ B_{k21} &= 0, & p + 1 \le k \le 2p + 1, \end{aligned}$$

from which together with (3.3) and (4.6) yields

$$dA_{k11} + (A_{k11}B_{k11}^* - B_{k+1,11}^*A_{k11})\overline{\varphi} - \sqrt{-1}\rho A_{k11} \equiv 0 \mod \varphi, \quad 0 \le k \le p,$$
(4.10)
$$\partial Q_0 = (Q_0B_{011} - B_{p+1,11}Q_0)\varphi.$$

From (4.10) we can calculate out that

(4.11)
$$d \log \left(\det(A_{011} \dots A_{p11} Q_0^*) \right) - \sqrt{-1t(p+1)\rho} \equiv 0 \mod \varphi,$$

and consequently,

(4.12)
$$\Delta \log |\det(A_{011} \dots A_{p11} Q_0^*)| = t(p+1)K$$

Integrating (4.12) on M and making use of Gauss-Bonnet theorem, Lemma 4.1 of [9] and Noticing the fact that

(4.13)
$$r(\partial'_k) = r(|A_k|) \le r(|A_{k11}|) \le \frac{1}{t} r(\det A_{k11}),$$

we get

(4.14)
$$\sum_{k=0}^{p} \mathbf{r}(\partial'_{k}) \le 2(p+1)(g-1).$$

Similarly we can prove

(4.15)
$$\sum_{k=-1}^{p-1} \mathbf{r}(\partial'_k) \le 2(p+1)(g-1).$$

Note that $r(\partial'_{-1})=r(|A_{-1}|)=r(\partial''_0)$, from (4.15) we get

(4.16)
$$r(\partial_0') + r(\partial_0'') \le 2(p+1)(g-1) \le 2\frac{n}{m}(g-1).$$

By (4.16) we can easily obtain the following theorem.

Theorem 4.6. Let $f: M \to G(m, n)$ be a harmonic map of a compact surface M with genus g into G(m, n) which generates the harmonic sequence (1.1). If

$$\mathbf{r}(\partial_0') + \mathbf{r}(\partial_0'') > 2\frac{n}{m}(g-1)$$

then at least one of the ∂' -transforms or ∂'' -transforms in (1.1) is degenerate.

Remark. Theorem 4.6 generalizes the corresponding results in [4,5].

References

- Chern, S. S., Wolfson, J. G., Harmonic maps of the two-spheres into a complex Grassmann manifold II, Ann. Math. 125 (1987), 301–335.
- [2] Wolfson, J. G., Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds, J. Diff. Geom. 27 (1988), 161–178.
- [3] Liao, R., Cyclic properties of the harmonic sequence of surfaces in CPⁿ, Math. Ann. 296 (1993), 363–384.
- [4] Dong, Y. X., On the isotropy of harmonic maps from surfaces to complex projective spaces, Inter. J. Math. 3 (1992), 165–177.
- [5] Jensen, G. R., Rigoli, M., On the isotropy of compact minimal surfaces in CPⁿ, Math. Z. 200 (1989), 169–180.
- [6] Burstall, F. E., Wood, J. C., The construction of harmonic maps into complex Grassmannian, J. Diff. Geom. 23 (1986), 255–297.
- [7] Uhlenbeck, K., Harmonic maps into Lie groups (classical solutions of the chiral model, J. Diff. Geom. 30 (1989), 1–50.

B. Y. WU

- [8] Shen, Y. B., Dong Y. X., On pseudo-holomorphic curves in complex Grassmannian, Chin. Ann. Math. 20B (1999), 341–350.
- [9] Eschenburg, J. H., Guadalupe, I. V., Tribuzy, R. A., The fundamental equations of minimal surfaces in CP², Math. Ann. 270 (1985), 571–598.
- [10] Eells, J., Wood, J. C., Harmonic maps from surfaces to complex projective spaces, Adv. Math. 49 (1983), 217–263.

DEPARTMENT OF MATHEMATICS, FUZHOU, FUJIAN, 350108, P. R. CHINA *E-mail:* bingyewu@yahoo.com.cn