ON THE DEGENERATION OF HARMONIC SEQUENCES FROM SURFACES INTO COMPLEX GRASSMANN MANIFOLDS

WU BING YE

Abstract

Let $f: M \rightarrow G(m, n)$ be a harmonic map from surface into complex Grassmann manifold. In this paper, some sufficient conditions for the harmonic sequence generated by f to have degenerate ∂^{\prime}-transform or $\partial^{\prime \prime}$-transform are given.

1. Introduction

Let $G(m, n)$ be the Grassmann manifold of all m-dimensional subspaces C^{m} in complex space C^{n}, M be a connected Riemannian surface. Given a harmonic map $f: M \rightarrow G(m, n)$, Chern-Wolfson obtain the following sequence of harmonic maps by using the ∂^{\prime}-transforms and $\partial^{\prime \prime}$-transforms:

$$
\begin{align*}
& f=f_{0} \xrightarrow{\partial^{\prime}} f_{1} \xrightarrow{\partial^{\prime}} \cdots \xrightarrow{\partial^{\prime}} f_{\alpha} \xrightarrow{\partial^{\prime}} \ldots, \\
& f=f_{0} \xrightarrow{\partial^{\prime \prime}} f_{-1} \xrightarrow{\partial^{\prime \prime}} \cdots \xrightarrow{\partial^{\prime \prime}} f_{-\alpha} \xrightarrow{\partial^{\prime \prime}} \ldots, \tag{1.1}
\end{align*}
$$

(1.1) is called the harmonic sequence generated by $f=f_{0}$. It is important to ask when the harmonic sequence (1.1) includes degenerate ∂^{\prime}-transform or $\partial^{\prime \prime}$ transform. If $m=1$, then the degeneration of ∂^{\prime}-transform or $\partial^{\prime \prime}$-transform is equivalent to the isotropy of f. We know that the harmonic sequence (1.1) must have degenerate ∂^{\prime}-transform or $\partial^{\prime \prime}$-transform for an arbitrary harmonic map f : $M \rightarrow G(m, n)$ if one of the following conditions holds:
(i) $g=0$, i.e., M is homeomorphic to the 2-sphere $S^{2}[2]$;
(ii) $g=1$ and $\operatorname{deg}(f) \neq 0[2]$;
(iii) $m=1,|\operatorname{deg}(f)|>(n-1)(g-1)[3,4]$;
(iv) $m=1, \mathrm{r}\left(\partial_{0}^{\prime}\right)+\mathrm{r}\left(\partial_{0}^{\prime \prime}\right)>2 n(g-1)[4,5]$; where g denotes the genus of M, $\operatorname{deg}(f)$ is the degree of the map and $\mathrm{r}\left(\partial_{0}^{\prime}\right)$ and $\mathrm{r}\left(\partial_{0}^{\prime \prime}\right)$ are the ramification indices of ∂_{0}^{\prime} and $\partial_{0}^{\prime \prime}$ respectively.

1991 Mathematics Subject Classification: 53C42, 53B30.
Key words and phrases: complex Grassmann manifold, harmonic map, harmonic sequence, genus, the generalized Frenet formulae.

Received October 13, 2003.

So far have we known above sufficient conditions to guarantee the existence of degenerate ∂^{\prime}-transform or $\partial^{\prime \prime}$-transform, but when $m>1$ and $g>1$ or when M is non-compact, it seems that there aren't any results about it. The main purpose of the present paper is to find some sufficient conditions to ensure the existence of degenerate ∂^{\prime}-transform or $\partial^{\prime \prime}$-transform. In order to do this, we establish the generalized Frenet formulae for harmonic maps and then use it to obtain some relative results.

2. Harmonic SEQUENCes

We equip C^{n} with the standard Hermitian inner product \langle,$\rangle , so that, for any$ two column vectors $X, Y \in C^{n},\langle X, Y\rangle=Y^{*} X$, where Y^{*} denotes the conjugate and transpose of Y.

Let M be a connected Riemannian surface with Riemannian metric $d s_{M}^{2}=\varphi \bar{\varphi}$, where φ is a complex-valued 1-form defined up to a factor of norm one. The structure equations of M are

$$
\begin{equation*}
d \varphi=-\sqrt{-1} \rho \wedge \varphi, \quad d \rho=-\frac{\sqrt{-1}}{2} K \varphi \wedge \bar{\varphi} \tag{2.1}
\end{equation*}
$$

where ρ is the real connection 1-form of M, and K the Gaussian curvature of M. Let $f: M \rightarrow G(m, n)$ be a harmonic map. Choose a local unitary frame Z_{1}, \ldots, Z_{n} along f suitably such that Z_{1}, \ldots, Z_{m} span f. We write

$$
\begin{equation*}
d Z_{i}=X_{i} \varphi+Y_{i} \bar{\varphi} \quad \bmod f \tag{2.2}
\end{equation*}
$$

where $X_{i}, Y_{i} \in f^{\perp}, i=1, \ldots, m$. It follows from [1] that except at isolated points the ranks of span $\left\{X_{1}, \ldots, X_{m}\right\}$ and span $\left\{Y_{1}, \ldots, Y_{m}\right\}$ are constant, and they define two harmonic maps $f_{1}=\partial^{\prime} f: M \rightarrow G\left(m_{1}, n\right)$ and $f_{-1}: M \rightarrow G\left(m_{-1}, n\right)$, where m_{1} and m_{-1} are the ranks of $\operatorname{span}\left\{X_{1}, \ldots, X_{m}\right\}$ and $\operatorname{span}\left\{Y_{1}, \ldots, Y_{m}\right\}$ respectively. Repeating in this way, we can get the harmonic sequence (1.1), where $f_{ \pm \alpha}: M \rightarrow G\left(m_{ \pm \alpha}, n\right)$. If $m_{\alpha}>m_{\alpha+1}$, then the ∂^{\prime}-transform of f_{α} is called degenerate. Similarly, when $m_{-\alpha}>m_{-\alpha-1}$, then the $\partial^{\prime \prime}$-transform of $f_{-\alpha}$ is called degenerate. In order to avoid confusion, sometimes we denote the ∂^{\prime}-transform and $\partial^{\prime \prime}$-transform of f_{k} by ∂_{k}^{\prime} and $\partial_{k}^{\prime \prime}$ respectively, $k=0, \pm 1, \ldots$ If $f_{-1} \perp f_{1}$ then $f=f_{0}$ is called strongly conformal [6]. If for any $\alpha>0, f_{\alpha} \neq 0$, then the number

$$
\begin{equation*}
r=\max \left\{j: f_{0} \perp f_{i}, \forall 1 \leq i \leq j\right\} \tag{2.3}
\end{equation*}
$$

must be finite, and it is called the isotropy order of $f[6]$. It is known that when $\partial_{k}^{\prime} \neq 0$ or $\partial_{k}^{\prime \prime} \neq 0$, then ∂_{k}^{\prime} or $\partial_{k}^{\prime \prime}$ has only isolated zeros, $k=0, \pm 1, \ldots$ Hence, when M is compact, the number of zeros of ∂_{k}^{\prime} or $\partial_{k}^{\prime \prime}$, counted according to multiplicity, is finite which is called the ramification index of ∂_{k}^{\prime} or $\partial_{k}^{\prime \prime}$, and will be denoted by $\mathrm{r}\left(\partial_{k}^{\prime}\right)$ or $\mathrm{r}\left(\partial_{k}^{\prime \prime}\right)$.

From [6] we know that there is a one-to-one correspondence between smooth map $f: M \rightarrow G(m, n)$ and the subbundle \underline{f} of the trivial bundle $M \times C^{n}$ of rank m which has fiber at $x \in M$ given by $\underline{f_{x}}=f(x)$. Therefore, we can identify f with the Hermitian orthogonal projection from $M \times C^{n}$ onto \underline{f}. From this point of view, we have

Lemma 2.1 ([7]). Let $f: M \rightarrow G(m, n) \subset U(n)$ be a smooth map. Then f is harmonic if and only if $d * A=0$, where $A=\frac{1}{2} s^{-1} d s, s=f-f^{\perp}$.

For the harmonic sequence (1.1), let $Z_{1}^{(k)}, \ldots, Z_{m_{k}}^{(k)}$ be the local unitary frame for $\frac{f_{k}}{\text { by }}, k=0, \pm 1, \ldots$ Then the Hermitian orthogonal projection f_{k} can be expressed

$$
\begin{equation*}
f_{k}=W_{k} W_{k}^{*} \tag{2.4}
\end{equation*}
$$

where $W_{k}=\left(Z_{1}^{(k)}, \ldots, Z_{m_{k}}^{(k)}\right)$ is the $\left(n \times m_{k}\right)$-matrix.

3. The generalized Frenet formulae

Let $f=f_{0}: M \rightarrow G(m, n)$ be a harmonic map which generates the harmonic sequence (1.1). The exterior derivative d has the decomposition $d=\partial+\bar{\partial}$. From [6] we see that $\partial^{\prime}\left(\partial^{\prime \prime} \underline{f_{k}}\right) \subset \underline{f_{k}}$ and $\partial^{\prime \prime}\left(\partial^{\prime} \underline{f_{k}}\right) \subset \underline{f_{k}}, k=0, \pm 1, \ldots$ Hence, locally there exist $\left(m_{k} \times m_{k}\right)$-matrices $\overline{B_{k}}, D_{k},\left(m_{k+1} \times m_{k}\right)$-matrix A_{k} and $\left(m_{k-1} \times m_{k}\right)$-matrix C_{k} so that

$$
\begin{aligned}
& \partial W_{k}=\left(W_{k+1} A_{k}+W_{k} B_{k}\right) \varphi, \\
& \bar{\partial} W_{k}=\left(W_{k-1} C_{k}+W_{k} D_{k}\right) \bar{\varphi} .
\end{aligned}
$$

By the construction of the harmonic sequence (1.1), we have $\underline{f_{k}} \perp \underline{f_{k+1}}$ and so $W_{k} W_{k}^{*}=I_{m_{k}}$ and $W_{k} W_{k+1}^{*}=0$. Operating $\bar{\partial}$ on them we obtain $\overline{B_{k}+D_{k}^{*}}=0$ and $A_{k}^{*}+C_{k+1}=0$. Consequently we get the following generalized Frenet formulae:

$$
\begin{align*}
& \partial W_{k}=\left(W_{k+1} A_{k}+W_{k} B_{k}\right) \varphi, \\
& \bar{\partial} W_{k}=-\left(W_{k-1} A_{k-1}^{*}+W_{k} B_{k}^{*}\right) \bar{\varphi} . \tag{3.1}
\end{align*}
$$

Since $\operatorname{rank}\left(f_{k}\right)$ is constant for each k except at isolated points, A_{k} is of full rank except at these isolated points. When f is an isometric immersion, we have [8]

$$
\begin{equation*}
\left|A_{0}\right|^{2}+\left|A_{-1}\right|^{2}=1, \quad \cos \alpha=\left|A_{0}\right|^{2}-\left|A_{-1}\right|^{2} \tag{3.2}
\end{equation*}
$$

here the norm $|Q|$ of a matrix Q is defined by $|Q|^{2}=\operatorname{tr}\left(Q Q^{*}\right)$ in a standard manner, and α is the Kaehler angle of f.

Lemma 3.1. In the generalized Frenet formulae (3.1), we have

$$
\begin{align*}
& d A_{k}+\left(A_{k} B_{k}^{*}-B_{k+1}^{*} A_{k}\right) \bar{\varphi}-\sqrt{-1} \rho A_{k} \equiv 0 \quad \bmod \varphi \\
& d\left(B_{k}^{*} \bar{\varphi}\right)-d\left(B_{k} \varphi\right)=\left(A_{k}^{*} A_{k}-A_{k-1} A_{k-1}^{*}+B_{k}^{*} B_{k}-B_{k} B_{k}^{*}\right) \varphi \wedge \bar{\varphi} \tag{3.3}
\end{align*}
$$

Proof. Set $s_{k}=f_{k}-f_{k}^{\perp}, A^{(k)}=\frac{1}{2} s_{k}^{-1} d s_{k}$. Thus $A^{(k)}$ is one half of the pull-back of Maurer- Cartan form of $U(n)$ by f_{k}, and it satisfies

$$
\begin{equation*}
d A^{(k)}+2 A^{(k)} \wedge A^{(k)}=0 \tag{3.4}
\end{equation*}
$$

From Lemma 2.1. we see that

$$
\begin{equation*}
d * A^{(k)}=0 \tag{3.5}
\end{equation*}
$$

On the other hand, by virtue of $(2.4),(3.1)$ and the definition of $A^{(k)}$ we get

$$
\begin{align*}
A^{(k)}=(& \left.-W_{k+1} A_{k} W_{k}^{*}-W_{k} A_{k-1} W_{k-1}^{*}\right) \varphi \\
& +\left(W_{k} A_{k}^{*} W_{k+1}^{*}+W_{k-1} A_{k-1}^{*} W_{k}^{*}\right) \bar{\varphi} \tag{3.6}
\end{align*}
$$

Combining (3.4)-(3.6) one can obtain (3.3) . Substituting (3.1) into $W_{k}^{*} d^{2} W_{k}=0$ yields $(3.3)_{2}$.
Lemma 3.2. If $m_{k}=m_{k+1}$, then at points where $\operatorname{det} A_{k} \neq 0$, we have

$$
\begin{equation*}
\Delta \log \left|\operatorname{det} A_{k}\right|=m_{k} K+2\left(\left|A_{k-1}\right|^{2}-2\left|A_{k}\right|^{2}+\left|A_{k+1}\right|^{2}\right) \tag{3.7}
\end{equation*}
$$

Moreover, if M is a compact surface with genus g, then

$$
\begin{equation*}
\mathrm{r}\left(\operatorname{det} A_{k}\right)=2 m_{k}(g-1)+\operatorname{deg}\left(f_{k}\right)-\operatorname{deg}\left(f_{k+1}\right), \tag{3.8}
\end{equation*}
$$

where $\mathrm{r}\left(\operatorname{det} A_{k}\right)$ denotes the number of zeros of $\operatorname{det} A_{k}$ counted according to multiplicity.
Proof. Note that $d \log \left(\operatorname{det} A_{k}\right)=\operatorname{tr}\left(A_{k}^{-1} d A_{k}\right)$, by $(3.3)_{1}$ we get

$$
\begin{equation*}
d \log \left(\operatorname{det} A_{k}\right)+\operatorname{tr}\left(B_{k}^{*}-B_{k+1}^{*}\right) \bar{\varphi}-\sqrt{-1} m_{k} \rho \equiv 0 \quad \bmod \varphi \tag{3.9}
\end{equation*}
$$

A standard computation together with (3.3) 2 and (3.9) yields (3.7). Integrating (3.7) on M and using Lemma 4.1 of [9], the Gauss-Bonnet theorem together with the definition of $\operatorname{deg}\left(f_{k}\right)$ and $\operatorname{deg}\left(f_{k+1}\right)$ [2] we finally get (3.8).

4. The main Results

In this section we shall study the sufficient conditions to ensure the existence of degenerate ∂^{\prime}-transform or $\partial^{\prime \prime}$-transform in harmonic sequence (1.1). First we have
Theorem 4.1. Let M be a connected and complete Riemannian surface with nonnegative Gaussian curvature K and $f: M \rightarrow G(m, n)$ be a harmonic isometric immersion. If there exists a positive number $\varepsilon>0$ so that $|\cos \alpha| \geq \varepsilon$, where α is the Kaehler angle of the immersion f, then at least one of the ∂^{\prime}-transforms or $\partial^{\prime \prime}$-transforms in harmonic sequence (1.1) generated by f is degenerate.
Proof. Suppose that under the conditions of the theorem, none of the ∂^{\prime}-transforms and $\partial^{\prime \prime}$-transforms in (1.1) generated by f is degenerate, that is to say, $m=$ $m_{0}=m_{ \pm 1}=\ldots$ Equivalently speaking, square matrices $A_{0}, A_{ \pm 1}, \ldots$ are all nonsingular. Without loss of generality, we may assume that $\cos \alpha \geq \varepsilon>0$. Then, for any positive integer p, a direct computation together with (3.2) and (3.7) yields (c.f. [8])

$$
\begin{align*}
\Delta \log \prod_{k=-1}^{-p} \prod_{j=-1}^{k}\left|\operatorname{det} A_{j}\right| & \tag{4.1}\\
& =\frac{1}{2} m p(p+1) K+(2 p+1) \cos \alpha-1+2\left|A_{-p-1}\right|^{2}
\end{align*}
$$

Since $\cos \alpha \geq \varepsilon>0$, we can choose p such that $(2 p+1) \cos \alpha-1>0$. Thus from (4.1) we conclude that

$$
\begin{equation*}
\Delta \log \prod_{k=-1}^{-p} \prod_{j=-1}^{k}\left|\operatorname{det} A_{j}\right|>0 \tag{4.2}
\end{equation*}
$$

from which it follows that the function

$$
\prod_{k=-1}^{-p} \prod_{j=-1}^{k}\left|\operatorname{det} A_{j}\right|
$$

is a subharmonic function on a complete surface M with non-negative Gaussian curvature, and it must be a constant. But this is in contradiction with (4.2). So the theorem is proved.
Corollary 4.2. Let $f: M \rightarrow C P^{n}$ be an isometric minimal immersion of a complete and connected surface M with non-negative Gaussian curvature into $C P^{n}$. If the Kaehler angle α of the immersion f satisfies $|\cos \alpha| \geq \varepsilon$, where ε is a positive number, then f must be isotropy.

Proposition 4.3. Let $f: M \rightarrow G(m,(p+1) m)$ be a harmonic map of a compact surface with genus g into $G(m,(p+1) m)$. If none of the ∂^{\prime}-transforms and $\partial^{\prime \prime}$-transforms in harmonic sequence (1.1) generated by f is degenerate, and the isotropy order of f is p. Then $|\operatorname{deg}(f)| \leq m p(g-1)$.

Proof. It is easy to see that under the assumption of the proposition, $\underline{f_{0}}, \underline{f_{1}}, \ldots, f_{p}$ are mutually orthogonal, and that $\underline{f_{k}}=\underline{f_{k+p+1}}, k=0, \pm 1, \ldots$ Therefore, from the definition of $\operatorname{deg}(\cdot)$ it is clear that

$$
\begin{equation*}
\sum_{k=0}^{p} \operatorname{deg}\left(f_{k}\right)=0 \tag{4.3}
\end{equation*}
$$

from which together with (3.8) yields

$$
\begin{align*}
& \sum_{k=0}^{p} \mathrm{r}\left(\operatorname{det} A_{k}\right)=2 m(g-1)(p+1) \\
& \sum_{k=0}^{p}(p-k) \mathrm{r}\left(\operatorname{det} A_{k}\right)=(p+1) \operatorname{deg}\left(f_{0}\right)+m p(p+1)(g-1) \tag{4.4}\\
& \sum_{k=0}^{p} k \mathrm{r}\left(\operatorname{det} A_{k}\right)=-(p+1) \operatorname{deg}\left(f_{0}\right)+m p(p-1)(g-1)
\end{align*}
$$

From (4.4) we get

$$
\begin{aligned}
|\operatorname{deg}(f)| & =\left|\operatorname{deg}\left(f_{0}\right)\right|=\frac{1}{2}\left|\sum_{k=0}^{p}\left(\frac{p-2 k}{p+1}\right) \mathrm{r}\left(\operatorname{det} A_{k}\right)\right| \\
& \leq \frac{1}{2} \sum_{k=0}^{p}\left(\left|\frac{p-2 k}{p+1}\right| \mathrm{r}\left(\operatorname{det} A_{k}\right)\right) \leq \frac{p}{2(p+1)} \sum_{k=0}^{p} \mathrm{r}\left(\operatorname{det} A_{k}\right)=m p(g-1)
\end{aligned}
$$

Thus the proposition is proved.
The following two theorems are the direct consequences of Proposition 4.3.
Theorem 4.4. Let $f: M \rightarrow G(m, 2 m)$ be a harmonic map of a compact surface M with genus g into $G(m, 2 m)$. If $|\operatorname{deg}(f)|>m(g-1)$, then at least one of the ∂^{\prime}-transforms or $\partial^{\prime \prime}$-transforms in (1.1) is degenerate.

Theorem 4.5. Let $f: M \rightarrow G(m, 3 m)$ be a strongly conformal harmonic map of a compact surface M with genus g into $G(m, 3 m)$. If $|\operatorname{deg}(f)|>2 m(g-1)$, then at least one of the ∂^{\prime}-transforms or $\partial^{\prime \prime}$-transforms in (1.1) is degenerate.
Remark. Theorem 4.5 generalizes Proposition 7.8 of [10].
Now let M be a compact surface with genus g and $f: M \rightarrow G(m, n)$ be a harmonic map which generates (1.1) with non-degenerate ∂^{\prime}-transforms and $\partial^{\prime \prime}$ transforms. This implies that $m=m_{0}=m_{ \pm 1}=\ldots$ Suppose that the isotropy order of f is p so that

$$
\begin{align*}
& W_{k+i+1}^{*} W_{k}=0, \quad 0 \leq i \leq p-1 \\
& W_{k+p+1}^{*} W_{k} \neq 0 \tag{4.5}
\end{align*}
$$

here $k=0, \pm 1, \ldots$ Set $P_{k}=W_{k+p+1}^{*} W_{k}$, then from (3.1) and (4.5) we get

$$
\begin{equation*}
A_{k+p}^{*} P_{k}=P_{k-1} A_{k-1}^{*}, \quad \partial P_{k}=\left(P_{k} B_{k}-B_{k+p+1} P_{k}\right) \varphi \tag{4.6}
\end{equation*}
$$

It follows from (4.6) that $\operatorname{rank}\left(P_{0}\right)=\operatorname{rank}\left(P_{ \pm 1}\right)=\ldots$ except at isolated points. Thus we can choose the local frame $W_{k}, k=0,1, \ldots, 2 p+1$ suitably such that

$$
P_{k}=\left(\begin{array}{cc}
Q_{k} & 0 \tag{4.7}\\
0 & 0
\end{array}\right), \quad k=0,1, \ldots, p
$$

where Q_{k} 's are non-singular $(t \times t)$-matrices except at isolated points, and $t=$ $\operatorname{rank}\left(P_{0}\right)=\operatorname{rank}\left(P_{1}\right)=\ldots$ Assume the corresponding blocks of the matrices A_{k} and B_{k} are

$$
A_{k}=\left(\begin{array}{ll}
A_{k 11} & A_{k 12} \tag{4.8}\\
A_{k 21} & A_{k 22}
\end{array}\right), \quad B_{k}=\left(\begin{array}{ll}
B_{k 11} & B_{k 12} \\
B_{k 21} & B_{k 22}
\end{array}\right)
$$

Combining (4.6)-(4.8) it follows that

$$
\begin{array}{ll}
A_{k 21}=0, & 0 \leq k \leq p-1 \\
B_{k 12}=0, & 0 \leq k \leq p \tag{4.9}\\
B_{k 21}=0, & p+1 \leq k \leq 2 p+1
\end{array}
$$

from which together with (3.3) and (4.6) yields

$$
\begin{gather*}
d A_{k 11}+\left(A_{k 11} B_{k 11}^{*}-B_{k+1,11}^{*} A_{k 11}\right) \bar{\varphi}-\sqrt{-1} \rho A_{k 11} \equiv 0 \quad \bmod \varphi, \quad 0 \leq k \leq p, \\
4.10) \quad \partial Q_{0}=\left(Q_{0} B_{011}-B_{p+1,11} Q_{0}\right) \varphi \tag{4.10}
\end{gather*}
$$

From (4.10) we can calculate out that

$$
\begin{equation*}
d \log \left(\operatorname{det}\left(A_{011} \ldots A_{p 11} Q_{0}^{*}\right)\right)-\sqrt{-1} t(p+1) \rho \equiv 0 \quad \bmod \varphi \tag{4.11}
\end{equation*}
$$

and consequently,

$$
\begin{equation*}
\Delta \log \left|\operatorname{det}\left(A_{011} \ldots A_{p 11} Q_{0}^{*}\right)\right|=t(p+1) K \tag{4.12}
\end{equation*}
$$

Integrating (4.12) on M and making use of Gauss-Bonnet theorem, Lemma 4.1 of [9] and Noticing the fact that

$$
\begin{equation*}
\mathrm{r}\left(\partial_{k}^{\prime}\right)=\mathrm{r}\left(\left|A_{k}\right|\right) \leq \mathrm{r}\left(\left|A_{k 11}\right|\right) \leq \frac{1}{t} \mathrm{r}\left(\operatorname{det} A_{k 11}\right) \tag{4.13}
\end{equation*}
$$

we get

$$
\begin{equation*}
\sum_{k=0}^{p} \mathrm{r}\left(\partial_{k}^{\prime}\right) \leq 2(p+1)(g-1) \tag{4.14}
\end{equation*}
$$

Similarly we can prove

$$
\begin{equation*}
\sum_{k=-1}^{p-1} \mathrm{r}\left(\partial_{k}^{\prime}\right) \leq 2(p+1)(g-1) \tag{4.15}
\end{equation*}
$$

Note that $\mathrm{r}\left(\partial_{-1}^{\prime}\right)=\mathrm{r}\left(\left|A_{-1}\right|\right)=\mathrm{r}\left(\partial_{0}^{\prime \prime}\right)$, from (4.15) we get

$$
\begin{equation*}
\mathrm{r}\left(\partial_{0}^{\prime}\right)+\mathrm{r}\left(\partial_{0}^{\prime \prime}\right) \leq 2(p+1)(g-1) \leq 2 \frac{n}{m}(g-1) \tag{4.16}
\end{equation*}
$$

By (4.16) we can easily obtain the following theorem.
Theorem 4.6. Let $f: M \rightarrow G(m, n)$ be a harmonic map of a compact surface M with genus g into $G(m, n)$ which generates the harmonic sequence (1.1). If

$$
\mathrm{r}\left(\partial_{0}^{\prime}\right)+\mathrm{r}\left(\partial_{0}^{\prime \prime}\right)>2 \frac{n}{m}(g-1),
$$

then at least one of the ∂^{\prime}-transforms or $\partial^{\prime \prime}$-transforms in (1.1) is degenerate.
Remark. Theorem 4.6 generalizes the corresponding results in $[4,5]$.

References

[1] Chern, S. S., Wolfson, J. G., Harmonic maps of the two-spheres into a complex Grassmann manifold II, Ann. Math. 125 (1987), 301-335.
[2] Wolfson, J. G., Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds, J. Diff. Geom. 27 (1988), 161-178.
[3] Liao, R., Cyclic properties of the harmonic sequence of surfaces in CP ${ }^{n}$, Math. Ann. 296 (1993), 363-384.
[4] Dong, Y. X., On the isotropy of harmonic maps from surfaces to complex projective spaces, Inter. J. Math. 3 (1992), 165-177.
[5] Jensen, G. R., Rigoli, M., On the isotropy of compact minimal surfaces in CP ${ }^{n}$, Math. Z. 200 (1989), 169-180.
[6] Burstall, F. E., Wood, J. C., The construction of harmonic maps into complex Grassmannian, J. Diff. Geom. 23 (1986), 255-297.
[7] Uhlenbeck, K., Harmonic maps into Lie groups (classical solutions of the chiral model, J. Diff. Geom. 30 (1989), 1-50.
[8] Shen, Y. B., Dong Y. X., On pseudo-holomorphic curves in complex Grassmannian, Chin. Ann. Math. 20B (1999), 341-350.
[9] Eschenburg, J. H., Guadalupe, I. V., Tribuzy, R. A., The fundamental equations of minimal surfaces in $C P^{2}$, Math. Ann. 270 (1985), 571-598.
[10] Eells, J., Wood, J. C., Harmonic maps from surfaces to complex projective spaces, Adv. Math. 49 (1983), 217-263.

Department of Mathematics, Fuzhou, Fujian, 350108, P. R. China
E-mail: bingyewu@yahoo.com.cn

