SOLVABILITY OF A PERIODIC TYPE BOUNDARY VALUE PROBLEM FOR FIRST ORDER SCALAR FUNCTIONAL DIFFERENTIAL EQUATIONS

ROBERT HAKL, ALEXANDER LOMTATIDZE AND JIŘÍ ŠREMR

$$
\begin{aligned}
& \text { Abstract. Nonimprovable sufficient conditions for the solvability and } \\
& \text { unique solvability of the problem } \\
& \qquad u^{\prime}(t)=F(u)(t), \quad u(a)-\lambda u(b)=h(u) \\
& \text { are established, where } F: C([a, b] ; R) \rightarrow L([a, b] ; R) \text { is a continuous op- } \\
& \text { erator satisfying the Carathèodory conditions, } h: C([a, b] ; R) \rightarrow R \text { is a } \\
& \text { continuous functional, and } \lambda \in R_{+} \text {. }
\end{aligned}
$$

Introduction

The following notation is used throughout the paper.
R is the set of all real numbers, $R_{+}=[0,+\infty[$.
$C([a, b] ; R)$ is the Banach space of continuous functions $u:[a, b] \rightarrow R$ with the norm $\|u\|_{C}=\max \{|u(t)|: a \leq t \leq b\}$.
$\underset{\sim}{C}\left([a, b] ; R_{+}\right)=\{u \in C([a, b] ; R): u(t) \geq 0$ for $t \in[a, b]\}$.
$\widetilde{C}([a, b] ; R)$ is the set of absolutely continuous functions $u:[a, b] \rightarrow R$.
$B_{\lambda c}^{i}([a, b] ; R)$, where $c \in R_{+}$and $i \in\{1,2\}$, is the set of functions $u \in$ $C([a, b] ; R)$ satisfying

$$
(-1)^{i+1}(u(a)-\lambda u(b)) \operatorname{sgn}((2-i) u(a)+(i-1) u(b)) \leq c .
$$

$L([a, b] ; R)$ is the Banach space of Lebesgue integrable functions $p:[a, b] \rightarrow$ R with the norm $\|p\|_{L}=\int_{a}^{b}|p(s)| d s$.
$L\left([a, b] ; R_{+}\right)=\{p \in L([a, b] ; R): p(t) \geq 0$ for almost all $t \in[a, b]\}$.
$\mathcal{M}_{a b}$ is the set of measurable functions $\tau:[a, b] \rightarrow[a, b]$.

[^0]$\widetilde{\mathcal{L}}_{a b}$ is the set of linear operators $\ell: C([a, b] ; R) \rightarrow L([a, b] ; R)$ for which there is a function $\eta \in L\left([a, b] ; R_{+}\right)$such that
$$
|\ell(v)(t)| \leq \eta(t)\|v\|_{C} \quad \text { for } \quad t \in[a, b], v \in C([a, b] ; R)
$$
$\mathcal{P}_{a b}$ is the set of linear operators $\ell \in \widetilde{\mathcal{L}}_{a b}$ transforming the set $C\left([a, b] ; R_{+}\right)$ into the set $L\left([a, b] ; R_{+}\right)$.
$\mathcal{K}_{a b}$ is the set of continuous operators $F: C([a, b] ; R) \rightarrow L([a, b] ; R)$ satisfying the Carathèodory conditions, i.e., for each $r>0$ there exists $q_{r} \in L\left([a, b] ; R_{+}\right)$ such that
$$
|F(v)(t)| \leq q_{r}(t) \quad \text { for } \quad t \in[a, b],\|v\|_{C} \leq r
$$
$K([a, b] \times A ; B)$, where $A \subseteq R^{2}, B \subseteq R$, is the set of functions $f:[a, b] \times$ $A \rightarrow B$ satisfying the Carathèodory conditions, i.e., $f(\cdot, x):[a, b] \rightarrow B$ is a measurable function for all $x \in A, f(t, \cdot): A \rightarrow B$ is a continuous function for almost all $t \in[a, b]$, and for each $r>0$ there exists $q_{r} \in L\left([a, b] ; R_{+}\right)$such that
\[

$$
\begin{aligned}
& \quad|f(t, x)| \leq q_{r}(t) \quad \text { for } \quad t \in[a, b], x \in A,\|x\| \leq r . \\
& {[x]_{+}=\frac{1}{2}(|x|+x),[x]_{-}=\frac{1}{2}(|x|-x)}
\end{aligned}
$$
\]

By a solution of the equation

$$
\begin{equation*}
u^{\prime}(t)=F(u)(t), \tag{0.1}
\end{equation*}
$$

where $F \in \mathcal{K}_{a b}$, we understand a function $u \in \widetilde{C}([a, b] ; R)$ satisfying the equality (0.1) almost everywhere in $[a, b]$.

Consider the problem on the existence and uniqueness of a solution of (0.1) satisfying the boundary condition

$$
\begin{equation*}
u(a)-\lambda u(b)=h(u) \tag{0.2}
\end{equation*}
$$

where $h: C([a, b] ; R) \rightarrow R$ is a continuous functional such that for each $r>0$ there exists $M_{r} \in R_{+}$such that

$$
|h(v)| \leq M_{r} \quad \text { for } \quad\|v\|_{C} \leq r,
$$

and $\lambda \in R_{+}$.
For ordinary differential equations, i.e., when the operator F is so-called Nemitsky operator, the problem (0.1), (0.2) have been studied in details (see [8,19-22] and references therein). The basis of the theory of general boundary value problems for functional differential equations were laid down in monographs [1] and [29] (see also [2, 3, 9, 10, 19, 24-28]). In spite of a large number of papers devoted to boundary value problems for functional differential equations, only a few efficient sufficient solvability conditions are known at present even in the linear case

$$
\begin{align*}
& u^{\prime}(t)=\ell(u)(t)+q_{0}(t), \tag{0.3}\\
& u(a)-\lambda u(b)=c_{0} \tag{0.4}
\end{align*}
$$

where $\ell \in \widetilde{\mathcal{L}}_{a b}, q_{0} \in L([a, b] ; R)$, and $c_{0} \in R$ (see $\left.[5-7,11-18,30]\right)$. Here, we try to fill this gap in a certain way. More precisely, in Sections 1 and 2 there are established nonimprovable effective sufficient conditions for the solvability
and unique solvability of the problems $(0.3),(0.4)$ and (0.1), (0.2), respectively. Section 3 is devoted to the examples verifying the optimality of the main results.

All results are concretized for the differential equations with deviating arguments of the forms

$$
\begin{equation*}
u^{\prime}(t)=p(t) u(\tau(t))-g(t) u(\mu(t))+f(t, u(t), u(\nu(t))) \tag{0.5}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime}(t)=p(t) u(\tau(t))-g(t) u(\mu(t))+q_{0}(t) \tag{0.6}
\end{equation*}
$$

where $p, g \in L\left([a, b] ; R_{+}\right), q_{0} \in L([a, b] ; R), \tau, \mu, \nu \in \mathcal{M}_{a b}$, and $f \in K([a, b] \times$ $\left.R^{2} ; R\right)$.

1. Linear Problem

We need the following well-known result from the general theory of linear boudary value problems for functional differential equations (see, e.g., [4, 24, 29]).
Theorem 1.1. The problem (0.3), (0.4) is uniquely solvable iff the corresponding homogeneous problem

$$
\begin{align*}
& u^{\prime}(t)=\ell(u)(t) \tag{0}\\
& u(a)-\lambda u(b)=0 \tag{0}
\end{align*}
$$

has only the trivial solution.
Remark 1.1. It follows from the Riesz-Schauder theory that if $\ell \in \widetilde{\mathcal{L}}_{a b}$ and the problem $\left(0.3_{0}\right),\left(0.4_{0}\right)$ has a nontrivial solution, then there exist $q_{0} \in$ $L([a, b] ; R)$ and $c_{0} \in R$ such that the problem (0.3), (0.4) has no solution.
Definition 1.1. We will say that an operator $\ell \in \widetilde{\mathcal{L}}_{a b}$ belongs to the set $V^{+}(\lambda)$ (resp. $V^{-}(\lambda)$), if the homogeneous problem $\left(0.3_{0}\right),\left(0.4_{0}\right)$ has only the trivial solution, and for arbitrary $q_{0} \in L\left([a, b] ; R_{+}\right)$and $c_{0} \in R_{+}$, the solution of the problem (0.3), (0.4) is nonnegative (resp. nonpositive).
Remark 1.2. From Definition 1.1 it immediately follows that $\ell \in V^{+}(\lambda)$ (resp. $\ell \in V^{-}(\lambda)$), iff for the equation (0.3) the certain theorem on differential inequalities holds, i.e., whenever $u, v \in \widetilde{C}([a, b] ; R)$ satisfy the inequalities

$$
\begin{aligned}
& \left.\qquad \begin{array}{l}
u^{\prime}(t) \leq \ell(u)(t)+q_{0}(t), \quad v^{\prime}(t) \geq \ell(v)(t)+q_{0}(t) \quad \text { for } \quad t \in[a, b], \\
u(a)
\end{array}\right)=\lambda u(b) \leq v(a)-\lambda v(b) \\
& \text { then } u(t) \leq v(t)(\text { resp. } u(t) \geq v(t)) \text { for } t \in[a, b] .
\end{aligned}
$$

1.1. Main ReSults

Theorem 1.2. Let $\lambda \in[0,1[$ and there exist an operator

$$
\begin{equation*}
\ell_{0} \in V^{+}(\lambda) \tag{1.1}
\end{equation*}
$$

such that, on the set $\{v \in C([a, b] ; R): v(a)-\lambda v(b)=0\}$, the inequality

$$
\begin{equation*}
\ell(v)(t) \operatorname{sgn} v(t) \leq \ell_{0}(|v|)(t) \quad \text { for } \quad t \in[a, b] \tag{1.2}
\end{equation*}
$$

holds. Then the problem (0.3), (0.4) has a unique solution.
Remark 1.3. Theorem 1.2 is nonimprovable in a certain sense. More precisely, the inequality (1.2) cannot be replaced by the inequality

$$
\begin{equation*}
\ell(v)(t) \operatorname{sgn} v(t) \leq(1+\varepsilon) \ell_{0}(|v|)(t) \quad \text { for } \quad t \in[a, b] \tag{1.3}
\end{equation*}
$$

and the condition (1.1) cannot be replaced by the condition

$$
\begin{equation*}
(1-\varepsilon) \ell_{0} \in V^{+}(\lambda) \tag{1.4}
\end{equation*}
$$

no matter how small $\varepsilon>0$ would be (see On Remarks 1.3 and 1.4, and Examples 3.1 and 3.2).

Theorem 1.3. Let $\lambda \in\left[0,1\left[\right.\right.$ and there exist $\ell_{0}, \ell_{1} \in \mathcal{P}_{a b}$ such that, on the set $\{v \in C([a, b] ; R): v(a)-\lambda v(b)=0\}$, the inequality

$$
\begin{equation*}
\left|\ell(v)(t)+\ell_{1}(v)(t)\right| \leq \ell_{0}(|v|)(t) \quad \text { for } \quad t \in[a, b] \tag{1.5}
\end{equation*}
$$

holds. If, moreover,

$$
\begin{equation*}
\ell_{0} \in V^{+}(\lambda), \quad-\frac{1}{2} \ell_{1} \in V^{+}(\lambda) \tag{1.6}
\end{equation*}
$$

then the problem (0.3), (0.4) has a unique solution.
Remark 1.4. Theorem 1.3 is nonimprovable. More precisely, the condition (1.5) cannot be replaced by the condition

$$
\begin{equation*}
\left|\ell(v)(t)+\ell_{1}(v)(t)\right| \leq(1+\varepsilon) \ell_{0}(|v|)(t) \quad \text { for } \quad t \in[a, b] \tag{1.7}
\end{equation*}
$$

and the assumption (1.6) can be replaced neither by the assumption

$$
\begin{equation*}
(1-\varepsilon) \ell_{0} \in V^{+}(\lambda), \quad-\frac{1}{2} \ell_{1} \in V^{+}(\lambda) \tag{1.8}
\end{equation*}
$$

nor by the assumption

$$
\begin{equation*}
\ell_{0} \in V^{+}(\lambda), \quad-\frac{1}{2+\varepsilon} \ell_{1} \in V^{+}(\lambda) \tag{1.9}
\end{equation*}
$$

no matter how small $\varepsilon>0$ would be (see On Remarks 1.3 and 1.4, and Examples 3.1, 3.2 and 3.3).
Remark 1.5. Let $\lambda \in\left[1,+\infty\left[, \ell \in \widetilde{\mathcal{L}}_{a b}, q_{0} \in L([a, b] ; R)\right.\right.$, and $c_{0} \in R$. Introduce the operator $\psi: L([a, b] ; R) \rightarrow L([a, b] ; R)$ by setting

$$
\psi(w)(t) \stackrel{\text { def }}{=} w(a+b-t)
$$

Let φ be the restriction of ψ to the space $C([a, b] ; R)$. Put $\vartheta=\frac{1}{\lambda}, \widehat{c}_{0}=-\vartheta c_{0}$ and

$$
\widehat{\ell}(w)(t) \stackrel{\text { def }}{=}-\psi(\ell(\varphi(w)))(t), \quad \widehat{q}_{0}(t) \stackrel{\text { def }}{=}-\psi\left(q_{0}\right)(t)
$$

It is clear that if u is a solution of the problem $(0.3),(0.4)$ then the function $v \stackrel{\text { def }}{=} \varphi(u)$ is a solution of the problem

$$
\begin{equation*}
v^{\prime}(t)=\widehat{\ell}(v)(t)+\widehat{q}_{0}(t), \quad v(a)-\vartheta v(b)=\widehat{c}_{0} \tag{1.10}
\end{equation*}
$$

and vice versa, if v is a solution of the problem (1.10) then the function $u \stackrel{\text { def }}{=} \varphi(v)$ is a solution of the problem (0.3), (0.4).

Therefore, $\ell \in V^{+}(\lambda)$ (resp. $\ell \in V^{-}(\lambda)$) if and only if $\hat{\ell} \in V^{-}(\vartheta)$ (resp. $\left.\widehat{\ell} \in V^{+}(\vartheta)\right)$.

According to Remark 1.5, Theorems 1.2 and 1.3 imply
Theorem 1.4. Let $\lambda \in] 1,+\infty[$ and there exist an operator

$$
\ell_{0} \in V^{-}(\lambda)
$$

such that, on the set $\{v \in C([a, b] ; R): v(a)-\lambda v(b)=0\}$, the inequality

$$
\ell(v)(t) \operatorname{sgn} v(t) \geq \ell_{0}(|v|)(t) \quad \text { for } t \in[a, b]
$$

holds. Then the problem (0.3), (0.4) has a unique solution.
Theorem 1.5. Let $\lambda \in] 1,+\infty\left[\right.$ and there exist $\ell_{0}, \ell_{1} \in \mathcal{P}_{a b}$ such that, on the set $\{v \in C([a, b] ; R): v(a)-\lambda v(b)=0\}$, the inequality

$$
\left|\ell(v)(t)-\ell_{1}(v)(t)\right| \leq \ell_{0}(|v|)(t) \quad \text { for } \quad t \in[a, b]
$$

holds. Let, moreover,

$$
-\ell_{0} \in V^{-}(\lambda), \quad \frac{1}{2} \ell_{1} \in V^{-}(\lambda)
$$

Then the problem (0.3), (0.4) has a unique solution.
Remark 1.6. According to Remarks 1.3-1.5, the conditions in Theorems 1.4 and 1.5 are also nonimprovable in an appropriate sense.
Remark 1.7. In [17] and [18], effective nonimprovable sufficient conditions for an operator $\ell \in \widetilde{\mathcal{L}}_{a b}$ to belong to the set $V^{+}(\lambda)$ or $V^{-}(\lambda)$ have been established. Therefore, according to Theorems 1.2-1.5, the following corollaries are valid.
Corollary 1.1. Let $\lambda \in[0,1[$ and the functions p, τ satisfy at least one of the following conditions:
a) $\tau(t) \leq t$ for $t \in[a, b]$ and

$$
\lambda \exp \left(\int_{a}^{b} p(s) d s\right)<1
$$

b) there exists $\alpha \in] 0,1[$ such that

$$
\begin{aligned}
& \frac{\lambda}{1-\lambda} \int_{a}^{b} p(s) \int_{a}^{\tau(s)} p(\xi) d \xi d s+\int_{a}^{t} p(s) \int_{a}^{\tau(s)} p(\xi) d \xi d s \\
& \quad \leq\left(\alpha-\frac{\lambda}{1-\lambda} \int_{a}^{b} p(s) d s\right)\left(\frac{\lambda}{1-\lambda} \int_{a}^{b} p(s) d s+\int_{a}^{t} p(s) d s\right) \quad \text { for } \quad t \in[a, b] ;
\end{aligned}
$$

c)

$$
\lambda \exp \left(\int_{a}^{b} p(s) d s\right)+\int_{a}^{b} p(s) \sigma(s)\left(\int_{s}^{\tau(s)} p(\xi) d \xi\right) \exp \left(\int_{s}^{b} p(\eta) d \eta\right) d s<1
$$

where $\sigma(t)=\frac{1}{2}(1+\operatorname{sgn}(\tau(t)-t))$ for $t \in[a, b]$;
d) $\lambda \neq 0, p \not \equiv 0$ and there exist $\left.x \in] 0, \ln \frac{1}{\lambda}\right]$ such that

$$
\operatorname{ess} \sup \left\{\int_{t}^{\tau(t)} p(s) d s: t \in[a, b]\right\}<\frac{\|p\|_{L}}{x}\left(x+\ln \frac{(1-\lambda) x}{\|p\|_{L}\left(e^{x}-1\right)}\right)
$$

while the functions g, μ satisfy at least one of the following conditions:
e) $\lambda \neq 0$ and

$$
\int_{a}^{b} g(s) d s \leq 2 \lambda
$$

f) $\mu(t) \leq t$ for $t \in[a, b]$ and

$$
\int_{a}^{b} g(s) d s \leq 2
$$

g) $\mu(t) \leq t$ for $t \in[a, b]$ and

$$
\int_{a}^{b} g(s) \int_{\mu(s)}^{s} g(\xi) \exp \left(\frac{1}{2} \int_{\mu(\xi)}^{s} g(\eta) d \eta\right) d \xi d s \leq 4
$$

h) $g \not \equiv 0, \mu(t) \leq t$ for $t \in[a, b]$ and

$$
\operatorname{ess} \sup \left\{\int_{\mu(t)}^{t} g(s) d s: t \in[a, b]\right\}<2 \eta^{*}
$$

where

$$
\eta^{*}=\sup \left\{\frac{1}{x} \ln \left(x+\frac{x}{\exp \left(\frac{x}{2} \int_{a}^{b} g(s) d s\right)-1}\right): x>0\right\}
$$

Then the problem (0.6), (0.4) has a unique solution.
Corollary 1.2. Let $\lambda \in] 1,+\infty[$ and the functions g, μ satisfy at least one of the following conditions:
a) $\mu(t) \geq t$ for $t \in[a, b]$ and

$$
\exp \left(\int_{a}^{b} g(s) d s\right)<\lambda
$$

b) there exists $\alpha \in] 0,1[$ such that

$$
\begin{aligned}
& \frac{1}{\lambda-1} \int_{a}^{b} g(s) \int_{\mu(s)}^{b} g(\xi) d \xi d s+\int_{t}^{b} g(s) \int_{\mu(s)}^{b} g(\xi) d \xi d s \\
& \leq \\
& \quad\left(\alpha-\frac{1}{\lambda-1} \int_{a}^{b} g(s) d s\right)\left(\frac{1}{\lambda-1} \int_{a}^{b} g(s) d s+\int_{t}^{b} g(s) d s\right) \\
& \quad \text { for } t \in[a, b]
\end{aligned}
$$

c)

$$
\frac{1}{\lambda} \exp \left(\int_{a}^{b} g(s) d s\right)+\int_{a}^{b} g(s) \sigma(s)\left(\int_{\mu(s)}^{s} g(\xi) d \xi\right) \exp \left(\int_{a}^{s} g(\eta) d \eta\right) d s<1
$$

where $\sigma(t)=\frac{1}{2}(1+\operatorname{sgn}(t-\mu(t)))$ for $t \in[a, b]$;
d) $g \not \equiv 0$ and there exist $x \in] 0, \ln \lambda]$ such that

$$
\text { ess sup }\left\{\int_{\mu(t)}^{t} g(s) d s: t \in[a, b]\right\}<\frac{\|g\|_{L}}{x}\left(x+\ln \frac{(\lambda-1) x}{\lambda\|g\|_{L}\left(e^{x}-1\right)}\right)
$$

while the functions p, τ satisfy at least one of the following conditions:
e)

$$
\int_{a}^{b} p(s) d s \leq \frac{2}{\lambda}
$$

f) $\tau(t) \geq t$ for $t \in[a, b]$ and

$$
\int_{a}^{b} p(s) d s \leq 2
$$

g) $\tau(t) \geq t$ for $t \in[a, b]$ and

$$
\int_{a}^{b} p(s) \int_{s}^{\tau(s)} p(\xi) \exp \left(\frac{1}{2} \int_{s}^{\tau(\xi)} p(\eta) d \eta\right) d \xi d s \leq 4
$$

h) $p \not \equiv 0, \tau(t) \geq t$ for $t \in[a, b]$ and

$$
\text { ess } \sup \left\{\int_{t}^{\tau(t)} p(s) d s: t \in[a, b]\right\}<2 \kappa^{*}
$$

where

$$
\kappa^{*}=\sup \left\{\frac{1}{x} \ln \left(x+\frac{x}{\exp \left(\frac{x}{2} \int_{a}^{b} p(s) d s\right)-1}\right): x>0\right\}
$$

Then the problem (0.6), (0.4) has a unique solution.

1.2. Proofs of main results

Proof of Theorem 1.2. According to Theorem 1.1, it is sufficient to show that the problem $\left(0.3_{0}\right),\left(0.4_{0}\right)$ has only the trivial solution.

Let u be a solution of $\left(0.3_{0}\right),\left(0.4_{0}\right)$. Then, in view of (1.2), we have

$$
\begin{aligned}
& |u(t)|^{\prime}=\ell(u)(t) \operatorname{sgn} u(t) \leq \ell_{0}(|u|)(t) \quad \text { for } \quad t \in[a, b], \\
& |u(a)|-\lambda|u(b)|=0
\end{aligned}
$$

Hence, $|u|$ is a solution of the problem (0.3), (0.4 4_{0}) with $\ell \equiv \ell_{0}$ and $q_{0}(t)=$ $|u(t)|^{\prime}-\ell(|u|)(t) \leq 0$ for $t \in[a, b]$. Therefore, according to (1.1), we obtain $|u(t)| \leq 0$ for $t \in[a, b]$, i.e. $u \equiv 0$.

Proof of Theorem 1.3. According to Theorem 1.1, it is sufficient to show that the problem $\left(0.3_{0}\right),\left(0.4_{0}\right)$ has only the trivial solution.

Let u be a solution of $\left(0.3_{0}\right),\left(0.4_{0}\right)$. Then, in view of $\left(0.3_{0}\right)$, u satisfies

$$
\begin{equation*}
u^{\prime}(t)=-\frac{1}{2} \ell_{1}(u)(t)+\ell(u)(t)+\frac{1}{2} \ell_{1}(u)(t), \quad u(a)-\lambda u(b)=0 . \tag{1.11}
\end{equation*}
$$

By virtue of the assumption $-\frac{1}{2} \ell_{1} \in V^{+}(\lambda)$ and Theorem 1.1, the problem

$$
\begin{equation*}
\alpha^{\prime}(t)=-\frac{1}{2} \ell_{1}(\alpha)(t)+\ell_{0}(|u|)(t)+\frac{1}{2} \ell_{1}(|u|)(t), \quad \alpha(a)-\lambda \alpha(b)=0 \tag{1.12}
\end{equation*}
$$

has a unique solution α. Moreover, since $\ell_{0}, \ell_{1} \in \mathcal{P}_{a b}$ and $-\frac{1}{2} \ell_{1} \in V^{+}(\lambda)$,

$$
\begin{equation*}
\alpha(t) \geq 0 \quad \text { for } t \in[a, b] \tag{1.13}
\end{equation*}
$$

The equality (1.12), in view of (1.5) and the condition $\ell_{1} \in \mathcal{P}_{a b}$, yields

$$
\begin{aligned}
\alpha^{\prime}(t) & \geq-\frac{1}{2} \ell_{1}(\alpha)(t)+\ell(u)(t)+\frac{1}{2} \ell_{1}(u)(t) \quad \text { for } t \in[a, b] \\
(-\alpha(t))^{\prime} & \leq-\frac{1}{2} \ell_{1}(-\alpha)(t)+\ell(u)(t)+\frac{1}{2} \ell_{1}(u)(t) \quad \text { for } t \in[a, b] .
\end{aligned}
$$

The last two inequalities and (1.11), on account of the assumption $-\frac{1}{2} \ell_{1} \in$ $V^{+}(\lambda)$ and Remark 1.2, yield

$$
\begin{equation*}
|u(t)| \leq \alpha(t) \quad \text { for } t \in[a, b] \tag{1.14}
\end{equation*}
$$

On the other hand, due to (1.14) and the conditions $\ell_{0}, \ell_{1} \in \mathcal{P}_{a b}$, the equality (1.12) results in

$$
\alpha^{\prime}(t) \leq \ell_{0}(\alpha)(t) \quad \text { for } t \in[a, b]
$$

Since $\ell_{0} \in V^{+}(\lambda)$, the last inequality, together with $\alpha(a)-\lambda \alpha(b)=0$, yield $\alpha(t) \leq 0$ for $t \in[a, b]$ which, in view of (1.13), implies $\alpha \equiv 0$. Consequently, it follows from (1.14) that $u \equiv 0$.

2. Nonlinear problem

Throughout this section we assume that $q \in K\left([a, b] \times R_{+} ; R_{+}\right)$is nondecreasing in the second argument and satisfies

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{1}{x} \int_{a}^{b} q(s, x) d s=0 \tag{2.1}
\end{equation*}
$$

2.1. Main Results

Theorem 2.1. Let $\lambda \in\left[0,1\left[, c \in R_{+}\right.\right.$,

$$
\begin{equation*}
h(v) \operatorname{sgn} v(a) \leq c \quad \text { for } \quad v \in C([a, b] ; R) \tag{2.2}
\end{equation*}
$$

and let there exist $\ell_{0}, \ell_{1} \in \mathcal{P}_{a b}$ such that on the set $B_{\lambda c}^{1}([a, b] ; R)$ the inequality

$$
\begin{equation*}
\left[F(v)(t)+\ell_{1}(v)(t)\right] \operatorname{sgn} v(t) \leq \ell_{0}(|v|)(t)+q\left(t,\|v\|_{C}\right) \quad \text { for } t \in[a, b] \tag{2.3}
\end{equation*}
$$

is fulfilled. If, moreover,

$$
\begin{equation*}
\ell_{0} \in V^{+}(\lambda), \quad-\ell_{1} \in V^{+}(\lambda) \tag{2.4}
\end{equation*}
$$

then the problem (0.1), (0.2) has at least one solution.
Remark 2.1. Theorem 2.1 is nonimprovable in a certain sense. More precisely, the inequality (2.3) cannot be replaced by the inequality

$$
\begin{equation*}
\left[F(v)(t)+\ell_{1}(v)(t)\right] \operatorname{sgn} v(t) \leq(1+\varepsilon) \ell_{0}(|v|)(t)+q\left(t,\|v\|_{C}\right) \tag{2.5}
\end{equation*}
$$

no matter how small $\varepsilon>0$ would be. Moreover, the condition (2.4) can be replaced neither by the condition

$$
\begin{equation*}
(1-\varepsilon) \ell_{0} \in V^{+}(\lambda), \quad-\ell_{1} \in V^{+}(\lambda) \tag{2.6}
\end{equation*}
$$

nor by the condition

$$
\begin{equation*}
\ell_{0} \in V^{+}(\lambda), \quad-(1-\varepsilon) \ell_{1} \in V^{+}(\lambda) \tag{2.7}
\end{equation*}
$$

no matter how small $\varepsilon>0$ would be (see On Remark 2.1 and Example 3.4).
Theorem 2.2. Let $\lambda \in[0,1[$,

$$
\begin{equation*}
[h(v)-h(w)] \operatorname{sgn}(v(a)-w(a)) \leq 0 \quad \text { for } v, w \in C([a, b] ; R) \tag{2.8}
\end{equation*}
$$

and let there exist $\ell_{0}, \ell_{1} \in \mathcal{P}_{a b}$ such that, on the set $B_{\lambda c}^{1}([a, b] ; R)$, where $c=$ $|h(0)|$, the inequality

$$
\left[F(v)(t)-F(w)(t)+\ell_{1}(v-w)(t)\right] \operatorname{sgn}(v(t)-w(t)) \leq \ell_{0}(|v-w|)(t)
$$

is fulfilled. If, moreover, the condition (2.4) is satisfied, then the problem (0.1), (0.2) has a unique solution.

Remark 2.2. Theorem 2.2 is nonimprovable in a certain sense (see On Remark 2.2).

Remark 2.3. Let $\lambda \in[1,+\infty[, \varphi, \psi$ be the operators defined in Remark 1.5. Put $\vartheta=\frac{1}{\lambda}$, and

$$
\widehat{F}(w)(t) \stackrel{\text { def }}{=}-\psi(F(\varphi(w)))(t), \quad \widehat{h}(w) \stackrel{\text { def }}{=}-\vartheta h(\varphi(w)) .
$$

It is clear that if u is a solution of the problem $(0.1),(0.2)$, then the function $v \stackrel{\text { def }}{=} \varphi(u)$ is a solution of the problem

$$
\begin{equation*}
v^{\prime}(t)=\widehat{F}(v)(t), \quad v(a)-\vartheta v(b)=\widehat{h}(v) \tag{2.9}
\end{equation*}
$$

and vice versa, if v is a solution of the problem (2.9), then the function $u \stackrel{\text { def }}{=} \varphi(v)$ is a solution of the problem (0.1), (0.2).

In view of Remarks 1.5 and 2.3, the following results are an immediate consequence of Theorems 2.1 and 2.2 .

Theorem 2.3. Let $\lambda \in] 1,+\infty\left[, c \in R_{+}\right.$,

$$
\begin{equation*}
h(v) \operatorname{sgn} v(b) \geq-c \quad \text { for } \quad v \in C([a, b] ; R) \tag{2.10}
\end{equation*}
$$

and let there exist $\ell_{0}, \ell_{1} \in \mathcal{P}_{a b}$ such that, on the set $B_{\lambda c}^{2}([a, b] ; R)$, the inequality

$$
\left[F(v)(t)-\ell_{1}(v)(t)\right] \operatorname{sgn} v(t) \geq-\ell_{0}(|v|)(t)-q\left(t,\|v\|_{C}\right) \quad \text { for } t \in[a, b]
$$

is fulfilled. If, moreover,

$$
\begin{equation*}
-\ell_{0} \in V^{-}(\lambda), \quad \ell_{1} \in V^{-}(\lambda) \tag{2.11}
\end{equation*}
$$

then the problem (0.1), (0.2) has at least one solution.
Theorem 2.4. Let $\lambda \in] 1,+\infty[$,

$$
\begin{equation*}
[h(v)-h(w)] \operatorname{sgn}(v(b)-w(b)) \geq 0 \quad \text { for } v, w \in C([a, b] ; R) \tag{2.12}
\end{equation*}
$$

and let there exist $\ell_{0}, \ell_{1} \in \mathcal{P}_{a b}$ such that, on the set $B_{\lambda c}^{2}([a, b] ; R)$, where $c=$ $|h(0)|$, the inequality

$$
\left[F(v)(t)-F(w)(t)-\ell_{1}(v-w)(t)\right] \operatorname{sgn}(v(t)-w(t)) \geq-\ell_{0}(|v-w|)(t)
$$

is fulfilled. If, moreover, the condition (2.11) is satisfied, then the problem (0.1), (0.2) has a unique solution.

Remark 2.4. According to Remarks 1.5, 2.1, 2.2, and 2.3, Theorems 2.3 and 2.4 are nonimprovable in an appropriate sense.

For the problem (0.5), (0.2), Theorems 2.1-2.4 imply the following assertions.

Corollary 2.1. Let $\lambda \in\left[0,1\left[, c \in R_{+}\right.\right.$, the condition (2.2) be fulfilled, and

$$
f(t, x, y) \operatorname{sgn} x \leq q(t,|x|) \quad \text { for } t \in[a, b], x, y \in R .
$$

Let, moreover, the functions p, τ satisfy at least one of the conditions a), b), c) or d) in Corollary 1.1, while the functions g, μ satisfy at least one of the following conditions:
e) $\lambda \neq 0$ and

$$
\int_{a}^{b} g(s) d s \leq \lambda
$$

f) $\mu(t) \leq t$ for $t \in[a, b]$ and

$$
\int_{a}^{b} g(s) d s \leq 1
$$

g) $\mu(t) \leq t$ for $t \in[a, b]$ and

$$
\int_{a}^{b} g(s) \int_{\mu(s)}^{s} g(\xi) \exp \left(\int_{\mu(\xi)}^{s} g(\eta) d \eta\right) d \xi d s \leq 1
$$

h) $g \not \equiv 0, \mu(t) \leq t$ for $t \in[a, b]$ and

$$
\operatorname{ess} \sup \left\{\int_{\mu(t)}^{t} g(s) d s: t \in[a, b]\right\}<\eta^{*}
$$

where

$$
\eta^{*}=\sup \left\{\frac{1}{x} \ln \left(x+\frac{x}{\exp \left(x \int_{a}^{b} g(s) d s\right)-1}\right): x>0\right\}
$$

Then the problem (0.5), (0.2) has at least one solution.
Corollary 2.2. Let $\lambda \in[0,1[$, the condition (2.8) be fulfilled, and
$\left[f\left(t, x_{1}, y_{1}\right)-f\left(t, x_{2}, y_{2}\right)\right] \operatorname{sgn}\left(x_{1}-x_{2}\right) \leq 0 \quad$ for $t \in[a, b], \quad x_{1}, y_{1}, x_{2}, y_{2} \in R$. Let, moreover, the functions p, τ satisfy at least one of the conditions a), b), c) or d) in Corollary 1.1, while the functions g, μ satisfy at least one of the conditions e), f), g) or h) in Corollary 2.1. Then the problem (0.5), (0.2) has a unique solution.
Corollary 2.3. Let $\lambda \in] 1,+\infty\left[, c \in R_{+}\right.$, the condition (2.10) be fulfilled, and

$$
f(t, x, y) \operatorname{sgn} x \geq-q(t,|x|) \quad \text { for } t \in[a, b], x, y \in R
$$

Let, moreover, the functions g, μ satisfy at least one of the conditions a), b), c) or d) in Corollary 1.2, while the functions p, τ satisfy at least one of the following conditions:
e)

$$
\int_{a}^{b} p(s) d s \leq \frac{1}{\lambda}
$$

f) $\tau(t) \geq t$ for $t \in[a, b]$ and

$$
\int_{a}^{b} p(s) d s \leq 1
$$

g) $\tau(t) \geq t$ for $t \in[a, b]$ and

$$
\int_{a}^{b} p(s) \int_{s}^{\tau(s)} p(\xi) \exp \left(\int_{s}^{\tau(\xi)} p(\eta) d \eta\right) d \xi d s \leq 1
$$

h) $p \not \equiv 0, \tau(t) \geq t$ for $t \in[a, b]$ and

$$
\text { ess sup }\left\{\int_{t}^{\tau(t)} p(s) d s: t \in[a, b]\right\}<\kappa^{*}
$$

where

$$
\kappa^{*}=\sup \left\{\frac{1}{x} \ln \left(x+\frac{x}{\exp \left(x \int_{a}^{b} p(s) d s\right)-1}\right): x>0\right\}
$$

Then the problem (0.5), (0.2) has at least one solution.
Corollary 2.4. Let $\lambda \in] 1,+\infty[$, the condition (2.12) be fulfilled, and $\left[f\left(t, x_{1}, y_{1}\right)-f\left(t, x_{2}, y_{2}\right)\right] \operatorname{sgn}\left(x_{1}-x_{2}\right) \geq 0 \quad$ for $t \in[a, b], x_{1}, y_{1}, x_{2}, y_{2} \in R$.

Let, moreover, the functions g, μ satisfy at least one of the conditions a), b), c) or d) in Corollary 1.2, while the functions p, τ satisfy at least one of the conditions e), f), g) or h) in Corollary 2.3. Then the problem (0.5), (0.2) has a unique solution.

2.2. AuXiliary propositions and proof of main results

First we formulate a result from [26, Theorem 1] in a suitable for us form.
Lemma 2.1. Let there exist $\ell_{1} \in \widetilde{\mathcal{L}}_{a b}$ and a positive number ρ such that the problem

$$
\begin{equation*}
u^{\prime}(t)+\ell_{1}(u)(t)=0, \quad u(a)-\lambda u(b)=0 \tag{2.13}
\end{equation*}
$$

has only the trivial solution and for every $\delta \in] 0,1[$, an arbitrary function $u \in \widetilde{C}([a, b] ; R)$ satisfying the relations

$$
\begin{equation*}
u^{\prime}(t)+\ell_{1}(u)(t)=\delta\left[F(u)(t)+\ell_{1}(u)(t)\right], \quad u(a)-\lambda u(b)=\delta h(u) \tag{2.14}
\end{equation*}
$$

admits the estimate

$$
\begin{equation*}
\|u\|_{C} \leq \rho \tag{2.15}
\end{equation*}
$$

Then the problem (0.1), (0.2) has at least one solution.
Definition 2.1. We say that the pair of operators $\left(\ell_{0}, \ell_{1}\right)$ belongs to the set $U(\lambda)$, if $\ell_{0} \in \mathcal{P}_{a b}, \ell_{1} \in \widetilde{\mathcal{L}}_{a b}$, and there exists a positive number r such that, for arbitrary $q^{*} \in L\left([a, b] ; R_{+}\right)$and $c \in R_{+}$, every function $u \in \widetilde{C}([a, b] ; R)$ satisfying the inequalities

$$
\begin{align*}
& {[u(a)-\lambda u(b)] \operatorname{sgn} u(a) \leq c} \tag{2.16}\\
& {\left[u^{\prime}(t)+\ell_{1}(u)(t)\right] \operatorname{sgn} u(t) \leq \ell_{0}(|u|)(t)+q^{*}(t) \quad \text { for } \quad t \in[a, b]} \tag{2.17}
\end{align*}
$$

admits the estimate

$$
\begin{equation*}
\|u\|_{C} \leq r\left(c+\left\|q^{*}\right\|_{L}\right) \tag{2.18}
\end{equation*}
$$

Lemma 2.2. Let $c \in R_{+}$,

$$
\begin{equation*}
h(v) \operatorname{sgn} v(a) \leq c \quad \text { for } \quad v \in C([a, b] ; R) \tag{2.19}
\end{equation*}
$$

and let there exist $\left(\ell_{0}, \ell_{1}\right) \in U(\lambda)$ such that, on the set $B_{\lambda c}^{1}([a, b] ; R)$, the inequality
(2.20) $\left[F(v)(t)+\ell_{1}(v)(t)\right] \operatorname{sgn} v(t) \leq \ell_{0}(|v|)(t)+q\left(t,\|v\|_{C}\right) \quad$ for $\quad t \in[a, b]$
is fulfilled. Then the problem (0.1), (0.2) has at least one solution.
Proof. First note, that due to the condition $\left(\ell_{0}, \ell_{1}\right) \in U(\lambda)$, the homogeneous problem (2.13) has only the trivial solution.

Let r be the number appearing in Definition 2.1. According to (2.1), there exists $\rho>2 r c$ such that

$$
\frac{1}{x} \int_{a}^{b} q(s, x) d s<\frac{1}{2 r} \quad \text { for } \quad x>\rho
$$

Now assume that a function $u \in \widetilde{C}([a, b] ; R)$ satisfies (2.14) for some $\delta \in$ $] 0,1[$. Then, according to (2.19), u satisfies the inequality (2.16), i.e., $u \in$ $B_{\lambda c}^{1}([a, b] ; R)$. By (2.20), the inequality (2.17) is fulfilled with $q^{*}(t)=q\left(t,\|u\|_{C}\right)$ for $t \in[a, b]$. Hence, by the condition $\left(\ell_{0}, \ell_{1}\right) \in U(\lambda)$ and the definition of the number ρ, the estimate (2.15) holds.

Since ρ depends neither on u nor on δ, from Lemma 2.1 it follows that the problem (0.1), (0.2) has at least one solution.

Lemma 2.3. Let

$$
\begin{equation*}
[h(v)-h(w)] \operatorname{sgn}(v(a)-w(a)) \leq 0 \quad \text { for } v, w \in C([a, b] ; R) \tag{2.21}
\end{equation*}
$$

and let there exist $\left(\ell_{0}, \ell_{1}\right) \in U(\lambda)$ such that, on the set $B_{\lambda c}^{1}([a, b] ; R)$, where $c=|h(0)|$, the inequality

$$
\begin{align*}
& {\left[F(v)(t)-F(w)(t)+\ell_{1}(v-w)(t)\right] \operatorname{sgn}(v(t)-w(t))} \tag{2.22}\\
& \quad \leq \ell_{0}(|v-w|)(t) \quad \text { for } t \in[a, b]
\end{align*}
$$

is fulfilled. Then the problem (0.1), (0.2) has a unique solution.
Proof. It follows from (2.21) that the condition (2.19) is fulfilled with $c=$ $|h(0)|$. By (2.22), we get that, on the set $B_{\lambda c}^{1}([a, b] ; R)$, the inequality (2.20) holds, where $q \equiv|F(0)|$. Consequently, the assumptions of Lemma 2.2 are fulfilled and so the problem $(0.1),(0.2)$ has at least one solution. It remains to show that the problem $(0.1),(0.2)$ has at most one solution.

Let u_{1}, u_{2} be solutions of the problem (0.1), (0.2). Put $u(t)=u_{1}(t)-u_{2}(t)$ for $t \in[a, b]$. By (2.21) and (2.22) it is clear that

$$
\begin{aligned}
& {[u(a)-\lambda u(b)] \operatorname{sgn} u(a) \leq 0} \\
& {\left[u^{\prime}(t)+\ell_{1}(u)(t)\right] \operatorname{sgn} u(t) \leq \ell_{0}(|u|)(t) \quad \text { for } t \in[a, b]}
\end{aligned}
$$

Now the condition $\left(\ell_{0}, \ell_{1}\right) \in U(\lambda)$ implies $u \equiv 0$, consequently, $u_{1} \equiv u_{2}$.
Lemma 2.4. Let $\ell_{0} \in \widetilde{\mathcal{L}}_{a b}$ and the homogeneous problem

$$
v^{\prime}(t)=\ell_{0}(v)(t), \quad v(a)-\lambda v(b)=0
$$

have only the trivial solution. Then there exists a positive number r_{0} such that, for arbitrary $q^{*} \in L([a, b] ; R)$ and $c \in R$, the solution v of the problem

$$
\begin{equation*}
v^{\prime}(t)=\ell_{0}(v)(t)+q^{*}(t), \quad v(a)-\lambda v(b)=c \tag{2.23}
\end{equation*}
$$

admits the estimate

$$
\begin{equation*}
\|v\|_{C} \leq r_{0}\left(|c|+\left\|q^{*}\right\|_{L}\right) \tag{2.24}
\end{equation*}
$$

Proof. Let

$$
R \times L([a, b] ; R)=\left\{\left(c, q^{*}\right): c \in R, q^{*} \in L([a, b] ; R)\right\}
$$

be the Banach space with the norm

$$
\left\|\left(c, q^{*}\right)\right\|_{R \times L}=|c|+\left\|q^{*}\right\|_{L}
$$

and let Ω be an operator mapping every $\left(c, q^{*}\right) \in R \times L([a, b] ; R)$ to the solution v of the problem (2.23). According to Theorem 1.4 in $[24], \Omega: R \times L([a, b] ; R) \rightarrow$ $C([a, b] ; R)$ is a linear bounded operator. Denote by r_{0} the norm of Ω. Then, clearly, for every $\left(c, q^{*}\right) \in R \times L([a, b] ; R)$, the inequality

$$
\left\|\Omega\left(c, q^{*}\right)\right\|_{C} \leq r_{0}\left(|c|+\left\|q^{*}\right\|_{L}\right)
$$

holds. Consequently, the solution $v=\Omega\left(c, q^{*}\right)$ of the problem (2.23) admits the estimate (2.24).

Lemma 2.5. Let $\lambda \in\left[0,1\left[, \ell_{0}, \ell_{1} \in \mathcal{P}_{a b}, \ell_{0} \in V^{+}(\lambda)\right.\right.$, and $-\ell_{1} \in V^{+}(\lambda)$. Then $\left(\ell_{0}, \ell_{1}\right) \in U(\lambda)$.

Proof. Let $q^{*} \in L\left([a, b] ; R_{+}\right), c \in R_{+}$, and $u \in \widetilde{C}([a, b] ; R)$ satisfy the inequalities (2.16) and (2.17). We will show that (2.18) holds, where $r=r_{0}$ is the number appearing in Lemma 2.4.

It is clear that

$$
\begin{equation*}
u^{\prime}(t)=-\ell_{1}(u)(t)+\widetilde{q}(t), \tag{2.25}
\end{equation*}
$$

where

$$
\widetilde{q}(t)=u^{\prime}(t)+\ell_{1}(u)(t) \quad \text { for } t \in[a, b] .
$$

Evidently, according to (2.17),

$$
\begin{equation*}
\widetilde{q}(t) \operatorname{sgn} u(t) \leq \ell_{0}(|u|)(t)+q^{*}(t) \quad \text { for } t \in[a, b] \tag{2.26}
\end{equation*}
$$

Furthermore, from (2.25), in view of the assumption $\ell_{1} \in \mathcal{P}_{a b}$ and the inequality (2.26), it follows that

$$
\begin{align*}
{[u(t)]_{+}^{\prime} \leq } & \ell_{1}\left([u]_{-}\right)(t)+\ell_{0}(|u|)(t)+q^{*}(t) \\
= & -\ell_{1}\left([u]_{+}\right)(t)+\ell_{1}(|u|)(t)+\ell_{0}(|u|)(t)+q^{*}(t) \tag{2.27}\\
& \quad \text { for } t \in[a, b],
\end{align*}
$$

and

$$
\begin{align*}
{[u(t)]_{-}^{\prime} \leq } & \ell_{1}\left([u]_{+}\right)(t)+\ell_{0}(|u|)(t)+q^{*}(t) \\
= & -\ell_{1}\left([u]_{-}\right)(t)+\ell_{1}(|u|)(t)+\ell_{0}(|u|)(t)+q^{*}(t) \tag{2.28}\\
& \quad \text { for } t \in[a, b]
\end{align*}
$$

Since $-\ell_{1} \in V^{+}(\lambda)$, according to Theorem 1.1, the problem
(2.29) $\alpha^{\prime}(t)=-\ell_{1}(\alpha)(t)+\ell_{1}(|u|)(t)+\ell_{0}(|u|)(t)+q^{*}(t), \quad \alpha(a)-\lambda \alpha(b)=c$
has a unique solution α. Moreover, from (2.27), (2.28), and (2.29), on account of the conditions $-\ell_{1} \in V^{+}(\lambda)$ and

$$
[u(a)]_{+}-\lambda[u(b)]_{+} \leq c, \quad[u(a)]_{-}-\lambda[u(b)]_{-} \leq c
$$

it follows that

$$
[u(t)]_{+} \leq \alpha(t), \quad[u(t)]_{-} \leq \alpha(t) \quad \text { for } t \in[a, b]
$$

and consequently

$$
\begin{equation*}
|u(t)| \leq \alpha(t) \quad \text { for } t \in[a, b] . \tag{2.30}
\end{equation*}
$$

By (2.30) and the condition $\ell_{0}, \ell_{1} \in \mathcal{P}_{a b}$, (2.29) results in

$$
\alpha^{\prime}(t) \leq \ell_{0}(\alpha)(t)+q^{*}(t) \quad \text { for } t \in[a, b]
$$

Since $\ell_{0} \in V^{+}(\lambda)$ and $\alpha(a)-\lambda \alpha(b)=c$, the latter inequality yields

$$
\begin{equation*}
\alpha(t) \leq v(t) \quad \text { for } t \in[a, b] \tag{2.31}
\end{equation*}
$$

where v is a solution of the problem (2.23). Now from (2.30) and (2.31), according to Lemma 2.4, the estimate (2.18) holds.

Theorem 2.1 follows from Lemmas 2.2 and 2.5, whereas Theorem 2.2 is a consequence of Lemmas 2.3 and 2.5.

3. On REMARKS $1.3,1.4,2.1$ AND 2.2

On Remarks 1.3 and 1.4. In Examples 3.1, 3.2 and 3.3, there are constructed operators $\ell \in \widetilde{\mathcal{L}}_{a b}$ such that the homogeneous problem $\left(0.3_{0}\right),\left(0.4_{0}\right)$ has a nontrivial solution. Then, according to Remark 1.1, there exist $q_{0} \in L([a, b] ; R)$ and $c_{0} \in R$ such that the problem (0.3), (0.4) has no solution.
Example 3.1. Let $\varepsilon>0$ and the operators $\ell, \ell_{0} \in \widetilde{\mathcal{L}}_{a b}$ be defined by

$$
\begin{equation*}
\ell(v)(t) \stackrel{\text { def }}{=}(1+\varepsilon) p(t) v(b), \quad \ell_{0}(v)(t) \stackrel{\text { def }}{=} p(t) v(b) \tag{3.1}
\end{equation*}
$$

where $p \in L\left([a, b] ; R_{+}\right)$is such that

$$
\begin{equation*}
\int_{a}^{b} p(s) d s=\frac{1-\lambda}{1+\varepsilon} \tag{3.2}
\end{equation*}
$$

According to Corollary 1.1 b) in [17], we have $\ell_{0} \in V^{+}(\lambda)$. Obviously, the assumptions of Theorem 1.2 are fulfilled except of the condition (1.2), instead of which the condition (1.3) is satisfied. Moreover, the assumptions of Theorem 1.3 are fulfilled with $\ell_{1} \equiv 0$, except for the condition (1.5), instead of which the condition (1.7) is satisfied.

On the other hand, the problem $\left(0.3_{0}\right),\left(0.4_{0}\right)$ has a nontrivial solution

$$
u(t)=\lambda+(1+\varepsilon) \int_{a}^{t} p(s) d s \quad \text { for } t \in[a, b]
$$

Example 3.1 shows that the inequalities (1.2) and (1.5) in Theorems 1.2 and 1.3 cannot be replaced by the inequalities (1.3) and (1.7), respectively, no matter how small $\varepsilon>0$ would be.
Example 3.2. Let $\varepsilon \in] 0,1\left[\right.$ and the operator $\ell \in \widetilde{\mathcal{L}}_{a b}$ be defined by

$$
\begin{equation*}
\ell(v)(t) \stackrel{\text { def }}{=} p(t) v(b), \tag{3.3}
\end{equation*}
$$

where $p \in L\left([a, b] ; R_{+}\right)$is such that

$$
\begin{equation*}
\int_{a}^{b} p(s) d s=1-\lambda \tag{3.4}
\end{equation*}
$$

Put $\ell_{0} \equiv \ell, \ell_{1} \equiv 0$. Then the conditions (1.2) in Theorem 1.2 and (1.5) in Theorem 1.3 are fulfilled. Furthermore, according to Corollary 1.1 b) in [17], we have $(1-\varepsilon) \ell_{0} \in V^{+}(\lambda)$.

On the other hand, the problem $\left(0.3_{0}\right),\left(0.4_{0}\right)$ has a nontrivial solution

$$
u(t)=\lambda+\int_{a}^{t} p(s) d s \quad \text { for } t \in[a, b]
$$

Example 3.2 shows that the condition (1.1) in Theorem 1.2 and the condition (1.6) in Theorem 1.3 cannot be replaced by the condition (1.4) and (1.8), no matter how small $\varepsilon>0$ would be.

Example 3.3. Let $\varepsilon>0, \delta=\frac{\varepsilon(1-\lambda)}{1+\varepsilon}$, and $\ell \in \widetilde{\mathcal{L}}_{03}$ be an operator defined by

$$
\begin{equation*}
\ell(v)(t) \stackrel{\text { def }}{=} p(t) v(\tau(t)) \tag{3.5}
\end{equation*}
$$

where

$$
p(t)=\left\{\begin{array}{ll}
1-\lambda-\delta & \text { for } t \in[0,1[\\
-\frac{2-\delta}{1-\delta} & \text { for } t \in[1,2[\\
-2 & \text { for } t \in[2,3]
\end{array}, \quad \tau(t)= \begin{cases}3 & \text { for } t \in[0,1[\\
1 & \text { for } t \in[1,2[\\
2 & \text { for } t \in[2,3]\end{cases}\right.
$$

Let, moreover,

$$
\begin{equation*}
\ell_{0}(v)(t) \stackrel{\text { def }}{=} p_{0}(t) v\left(\tau_{0}(t)\right), \quad \ell_{1}(v)(t) \stackrel{\text { def }}{=} p_{1}(t) v\left(\tau_{1}(t)\right) \tag{3.6}
\end{equation*}
$$

where $p_{0} \equiv[p]_{+}, p_{1} \equiv[p]_{-}$,

$$
\tau_{0} \equiv 3, \quad \tau_{1}(t)= \begin{cases}0 & \text { for } t \in[0,1[\\ 1 & \text { for } t \in[1,2[\\ 2 & \text { for } t \in[2,3]\end{cases}
$$

It is clear that $\ell_{0}, \ell_{1} \in \mathcal{P}_{03}$ and the condition (1.5) is fulfilled. Moreover,

$$
\int_{0}^{3} \ell_{0}(1)(s) d s=\int_{0}^{1} p_{0}(s) d s=1-\lambda-\delta<1-\lambda
$$

Consequently, according to Corollary 1.1 b) in $[17], \ell_{0} \in V^{+}(\lambda)$. It is not difficult to verify that the homogeneous problem

$$
u^{\prime}(t)=-\frac{1}{2+\varepsilon} \ell_{1}(u)(t), \quad u(0)-\lambda u(3)=0
$$

has only the trivial solution and, for arbitrary $q_{0} \in L\left([0,3] ; R_{+}\right)$and $c_{0} \in R_{+}$, the solution of the problem

$$
u^{\prime}(t)=-\frac{1}{2+\varepsilon} \ell_{1}(u)(t)+q_{0}(t), \quad u(0)-\lambda u(3)=c_{0}
$$

is nonnegative. Therefore, by Definition 1.1, we obtain $-\frac{1}{2+\varepsilon} \ell_{1} \in V^{+}(\lambda)$.
On the other hand, the function

$$
u(t)= \begin{cases}(1-\lambda-\delta) t+\lambda & \text { for } t \in[0,1[\\ (2-\delta)(1-t)+1-\delta & \text { for } t \in[1,2[\\ 2 t-5 & \text { for } t \in[2,3]\end{cases}
$$

is a nontrivial solution of the problem $\left(0.3_{0}\right),\left(0.4_{0}\right)$.
Example 3.3 shows that the assumption (1.6) in Theorem 1.3 cannot be replaced by (1.9), no matter how small $\varepsilon>0$ would be.
On Remark 2.1. Let $\varepsilon>0, \ell, \ell_{0} \in \widetilde{\mathcal{L}}_{a b}$ be defined by (3.1), where $p \in$ $L\left([a, b] ; R_{+}\right)$satisfies (3.2). According to Example 3.1, the problem $\left(0.3_{0}\right)$, $\left(0.4_{0}\right)$ has a nontrivial solution. By Remark 1.1, there exist $q_{0} \in L([a, b] ; R)$ and $c_{0} \in R$ such that the problem (0.1), (0.2), where

$$
\begin{equation*}
F(v)(t) \stackrel{\text { def }}{=} \ell(v)(t)+q_{0}(t) \quad \text { for } t \in[a, b], \quad h(v) \equiv c_{0} \tag{3.7}
\end{equation*}
$$

has no solution, while the conditions (2.2), (2.4) and (2.5) are fulfilled with $c=\left|c_{0}\right|, q \equiv\left|q_{0}\right|, \ell_{1} \equiv 0$. Thus, Example 3.1 shows that the condition (2.3) in Theorem 2.1 cannot be replaced by the condition (2.5), no matter how small $\varepsilon>0$ would be.

Let $\varepsilon \in] 0,1\left[, \ell \in \widetilde{\mathcal{L}}_{a b}\right.$ be defined by (3.3), where $p \in L\left([a, b] ; R_{+}\right)$satisfies (3.4). According to Example 3.2, the problem $\left(0.3_{0}\right)$, $\left(0.4_{0}\right)$ has a nontrivial solution. By Remark 1.1, there exist $q_{0} \in L([a, b] ; R)$ and $c_{0} \in R$ such that the problem (0.1), (0.2), where F and h are defined by (3.7), has no solution, while the conditions (2.2), (2.3) and (2.6) are fulfilled with $c=\left|c_{0}\right|, q \equiv\left|q_{0}\right|$, $\ell_{0} \equiv \ell$, and $\ell_{1} \equiv 0$. Therefore, Example 3.2 shows that the condition (2.4) in Theorem 2.1 cannot be replaced by (2.6), no matter how small $\varepsilon>0$ would be.

Example 3.4. Let $\lambda \in] 0,1[$ (for the case $\lambda=0$ see [15]), $\varepsilon \in] 0,1[, \quad \delta=$ $\varepsilon(1-\lambda), \vartheta \in] 0,1-\delta\left[\right.$ such that $\vartheta<\frac{\lambda \varepsilon}{1-\varepsilon}, \ell \in \widetilde{\mathcal{L}}_{05}$ be an operator defined by (3.5), where

$$
p(t)=\left\{\begin{array}{ll}
1-\lambda-\delta & \text { for } t \in[0,1[\\
0 & \text { for } t \in[1,2[\cup[3,4[\\
-\frac{1+\vartheta}{1-\delta} & \text { for } t \in[2,3[\\
-(1+\vartheta) & \text { for } t \in[4,5]
\end{array}, \quad \tau(t)=\left\{\begin{array}{ll}
5 & \text { for } t \in[0,1[\\
1 & \text { for } t \in[1,3[\\
3 & \text { for } t \in[3,5]
\end{array},\right.\right.
$$

and ℓ_{0}, ℓ_{1} be defined by (3.6), where $p_{0} \equiv[p]_{+}, p_{1} \equiv[p]_{-}$,

$$
\tau_{0} \equiv 5, \quad \tau_{1}(t)= \begin{cases}0 & \text { for } t \in[0,1[\\ 1 & \text { for } t \in[1,3[\\ 3 & \text { for } t \in[3,5]\end{cases}
$$

Put

$$
z(t)=\left\{\begin{array}{ll}
0 & \text { for } t \in[0,1[\cup[2,3[\cup[4,5[\\
-\frac{1-\delta-\vartheta}{(1-\delta-\vartheta)(1-t)+1-\delta} & \text { for } t \in[1,2[\\
-\frac{1-\vartheta}{1-(1-\vartheta)(t-3)} & \text { for } t \in[3,4[
\end{array} .\right.
$$

It is clear that $-z \in L\left([0,5] ; R_{+}\right), \ell_{0}, \ell_{1} \in \mathcal{P}_{05}$ and

$$
\int_{0}^{5} \ell_{0}(1)(s) d s=\int_{0}^{1} p_{0}(s) d s=1-\lambda-\delta<1-\lambda .
$$

Consequently, according to Corollary 1.1 b) in $[17], \ell_{0} \in V^{+}(\lambda)$. It is not difficult to verify that the homogeneous problem

$$
u^{\prime}(t)=-(1-\varepsilon) \ell_{1}(u)(t), \quad u(0)-\lambda u(5)=0
$$

has only the trivial solution and, for arbitrary $q_{0} \in L\left([0,5] ; R_{+}\right)$and $c_{0} \in R_{+}$, the solution of the problem

$$
u^{\prime}(t)=-(1-\varepsilon) \ell_{1}(u)(t)+q_{0}(t), \quad u(0)-\lambda u(5)=c_{0}
$$

is nonnegative. Therefore, by Definition 1.1, we obtain $-(1-\varepsilon) \ell_{1} \in V^{+}(\lambda)$.

On the other hand, the function

$$
u(t)= \begin{cases}(1-\lambda-\delta) t+\lambda & \text { for } t \in[0,1[\\ (1-\delta-\vartheta)(1-t)+1-\delta & \text { for } t \in[1,2[\\ (1+\vartheta)(2-t)+\vartheta & \text { for } t \in[2,3[\\ (1-\vartheta)(t-3)-1 & \text { for } t \in[3,4[\\ (1+\vartheta)(t-4)-\vartheta & \text { for } t \in[4,5]\end{cases}
$$

is a nontrivial solution of the problem

$$
u^{\prime}(t)=p(t) u(\tau(t))+z(t) u(t), \quad u(a)-\lambda u(b)=0
$$

Consequently, according to Remark 1.1, there exist $q_{0} \in L([a, b] ; R)$ and $c_{0} \in$ R such that the problem (0.1), (0.2) with $F(v)(t) \stackrel{\text { def }}{=} p(t) v(\tau(t))+z(t) v(t)+$ $q_{0}(t)$ for $t \in[a, b], h(v) \equiv c_{0}$ has no solution, while the conditions (2.2), (2.3) and (2.7) are fulfilled with $c=\left|c_{0}\right|, q \equiv\left|q_{0}\right|$.

Example 3.4 shows that the assumption (2.4) in Theorem 2.1 cannot be replaced by the assumption (2.7), no matter how small $\varepsilon>0$ would be.

On Remark 2.2. Examples 3.1, 3.2 and 3.4 also show that the assumptions on the operators ℓ_{0}, ℓ_{1} in Theorem 2.2 cannot be weakened.

Acknowledgement. For the first author this work was supported by the Grant No. 201/00/D058 of the Grant Agency of the Czech Republic, for the second author by the RI No. J07/98:143100001 and for the third author by the Grant No. 201/99/0295 of the Grant Agency of the Czech Republic.

References

[1] Azbelev, N. V., Maksimov, V.P., Rakhmatullina, L.F., Introduction to the theory of functional differential equations, Nauka, Moscow, 1991 (In Russian).
[2] Azbelev, N V., Rakhmatullina, L. F., Theory of linear abstract functional differential equations and applications, Mem. Differential Equations Math. Phys. 8 (1996), 1-102.
[3] Bernfeld, S. R., Lakshmikantham, V., An introduction to nonlinear boundary value problems, Academic Press, Inc., New York and London, 1974.
[4] Bravyi, E., A note on the Fredholm property of boundary value problems for linear functional differential equations, Mem. Differential Equations Math. Phys. 20 (2000), 133-135.
[5] Bravyi, E., Hakl, R., Lomtatidze, A., Optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations, Czechoslovak Math. J. 52 (2002), No. 3, 513-530.
[6] Bravyi, E., Hakl, R., Lomtatidze, A., On Cauchy problem for the first order nonlinear functional differential equations of non-Volterra's type, Czechoslovak Math. J. 52 (2002), No. 4, 673-690.
[7] Bravyi, E., Lomtatidze, A., Půža, B., A note on the theorem on differential inequalities, Georgian Math. J. 7 (2000), No. 4, 627-631.
[8] Coddington, E. A., Levinson, N., Theory of ordinary differential equations, Mc-GrawHill Book Company, Inc., New York-Toronto-London, 1955.
[9] Gelashvili, S. M., On a boundary value problem for systems of functional differential equations, Arch. Math. (Brno) 20 (1964), 157-168 (In Russian).
[10] Gelashvili, S., Kiguradze, I., On multi-point boundary value problems for systems of functional differential and difference equations, Mem. Differential Equations Math. Phys. 5 (1995), 1-113.
[11] Hakl, R., On some boundary value problems for systems of linear functional differential equations, Electron. J. Qual. Theory Differ. Equ. (1999), No. 10, 1-16.
[12] Hakl, R., Kiguradze, I., Půža, B., Upper and lower solutions of boundary value problems for functional differential equations and theorems on functional differential inequalities. Georgian Math. J. 7 (2000), No. 3, 489-512.
[13] Hakl, R., Lomtatidze, A., A note on the Cauchy problem for first order linear differential equations with a deviating argument, Arch. Math. (Brno) 38 (2002), No. 1, 61-71.
[14] Hakl, R., Lomtatidze, A., Půža, B., On nonnegative solutions of first order scalar functional differential equations, Mem. Differential Equations Math. Phys. 23 (2001), 51-84.
[15] Hakl, R., Lomtatidze, A., Půža, B., On a boundary value problem for first order scalar functional differential equations, Nonlinear Anal. 53 (2003), Nos. 3-4, 391-405.
[16] Hakl, R., Lomtatidze, A., Půža, B., New optimal conditions for unique solvability of the Cauchy problem for first order linear functional differential equations, Math. Bohem. 127 (2002), No. 4, 509-524.
[17] Hakl, R., Lomtatidze, A., Šremr, J., On nonnegative solutions of a periodic type boundary value problems for first order scalar functional differential equations, Funct. Differ. Equ., to appear.
[18] Hakl, R., Lomtatidze, A., Šremr, J., On constant sign solutions of a periodic type boundary value problems for first order scalar functional differential equations, Mem. Differential Equations Math. Phys. 26 (2002), 65-90.
[19] Hale, J., Theory of functional differential equations, Springer-Verlag, New York-Heidelberg-Berlin, 1977.
[20] Hartman, P., Ordinary differential equations, John Wiley \& Sons, Inc., New York-London-Sydney, 1964.
[21] Kiguradze, I., Some singular boundary value problems for ordinary differential equations, Tbilisi Univ. Press, Tbilisi, 1975 (In Russian).
[22] Kiguradze, I., Boundary value problems for systems of ordinary differential equations, Current problems in mathematics. Newest results, Vol. 30, 3-103, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vses. Inst. Nauchn. i Tekh. Inform., Moscow (1987) (In Russian).
[23] Kiguradze, I., Initial and boundary value problems for systems of ordinary differential equations I, Metsniereba, Tbilisi, 1997 (In Russian).
[24] Kiguradze, I., Půža, B., On boundary value problems for systems of linear functional differential equations, Czechoslovak Math. J. 47 (1997), No. 2, 341-373.
[25] Kiguradze, I., Půža, B., Conti-Opial type theorems for systems of functional differential equations, Differ. Uravn. 33 (1997), No. 2, 185-194 (In Russian).
[26] Kiguradze, I., Půža, B., On boundary value problems for functional differential equations, Mem. Differential Equations Math. Phys. 12 (1997), 106-113.
[27] Kiguradze, I., Půža, B., On the solvability of nonlinear boundary value problems for functional differential equations, Georgian Math. J. 5 (1998), No. 3, 251-262.
[28] Kolmanovskii, V., Myshkis, A., Introduction to the theory and applications of functional differential equations, Kluwer Academic Publishers 1999.
[29] Schwabik, Š., Tvrdý, M., Vejvoda, O., Differential and integral equations: boundary value problems and adjoints Academia, Praha 1979.
[30] Tsitskishvili, R. A., Unique solvability and correctness of a linear boundary value problem for functional-differential equations, Rep. Enlarged Sessions Sem. I. N. Vekua Inst. Appl. Math. 5 (1990), No. 3, 195-198 (In Russian).
R. HAKL

Mathematical Institute, Czech Academy of Sciences
Žižkova 22, 61662 Brno, Czech Republic
E-mail: hakl@ipm.cz
A. Lomtatidze

Department of Mathematical Analysis
Faculty of Science, Masaryk University
Janáčkovo nám. 2A, 66295 Brno, Czech Republic
E-mail: bacho@math.muni.cz
J. ŠREMR

Mathematical Institute, Czech Academy of Sciences
Žižkova 22, 61662 Brno, Czech Republic
E-mail: sremr@ipm.cz

[^0]: 2000 Mathematics Subject Classification: 34K06, 34K10.
 Key words and phrases: functional differential equation, periodic type boundary value problem, solvability, unique solvability.

 Received June 17, 2002.

