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SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

E. SAVAŞ AND R. SAVAŞ

Abstract. In this paper we introduce a new concept of λ-strong conver-
gence with respect to an Orlicz function and examine some properties of the
resulting sequence spaces. It is also shown that if a sequence is λ-strongly
convergent with respect to an Orlicz function then it is λ-statistically conver-
gent.

1. Introduction

The concept of paranorm is closely related to linear metric spaces. It is a
generalization of that of absolute value. Let X be a linear space. A function
p : X → R is called paranorm, if

(P.1) p(0) ≥ 0
(P.2) p(x) ≥ 0 for all x ∈ X
(P.3) p(−x) = p(x) for all x ∈ X
(P.4) p(x + y) ≤ p(x) + p(y) for all x, y ∈ X (triangle inequality)
(P.5) if (λn) is a sequence of scalars with λn → λ(n → ∞) and (xn) is

a sequence of vectors with p(xn − x) → 0 (n → ∞), then p(λnxn − λx) → 0
(n → ∞) (continuity of multiplication by scalars).

A paranorm p for which p(x) = 0 implies x = 0 is called total. It is well known
that the metric of any linear metric space is given by some total paranorm (cf.
[14, Theorem 10.4.2, p.183]).

Let Λ = (λn) be a non decreasing sequence of positive reals tending to infinity
and λ1 = 1 and λn+1 ≤ λn + 1.

The generalized de la Vallée-Poussin means is defined by

tn(x) =
1

λn

∑

k∈In

xk ,

where In = [n − λn + 1, n]. A sequence x = (xk) is said to be (V, λ)-summable to
a number ` (see [2]) if tn(x) → ` as n → ∞.

2000 Mathematics Subject Classification: 40D05, 40A05.
Key words and phrases: sequence spaces, Orlicz function, de la Vallée-Poussin means.
Received January 8, 2002.



34 E. SAVAŞ, R. SAVAŞ

We write

[V, λ]0 =

{

x = xk : lim
n

1

λn

∑

k∈In

|xk | = 0

}

[V, λ] =

{

x = xk : lim
n

1

λn

∑

k∈In

|xk − `e| = 0 , for some ` ∈ C

}

and

[V, λ]∞ =

{

x = xk : sup
n

1

λn

∑

k∈In

|xk| < ∞
}

.

For the sets of sequences that are strongly summable to zero, strongly summable
and strongly bounded by the de la Vallée-Poussin method. In the special case
where λn = n for n = 1, 2, 3, . . . , the sets [V, λ]0, [V, λ] and [V, λ]∞ reduce to the
sets ω0, ω and ω∞ introduced and studied by Maddox [5].

Following Lindenstrauss and Tzafriri [4], we recall that an Orlicz function M is a
continuous, convex, non-decreasing function defined for x ≥ 0 such that M(0) = 0
and M(x) ≥ 0 for x > 0.

If convexity of Orlicz function M is replaced by M(x+y) ≤ M(x)+M(y) then
this function is called a modulus function, defined and discussed by Nakano [8],
Ruckle [10], Maddox [6] and others.

Lindenstrauss and Tzafriri used the idea of Orlicz function to construct the
sequence space

lM =

{

x = (xk) :

∞
∑

k=1

M

( |xk|
ρ

)

< ∞ for some ρ > 0

}

.

The space lM with the norm

‖x‖ = inf

{

ρ > 0 :
∞
∑

k=1

M

( |xk|
ρ

)

≤ 1

}

becomes a Banach space which is called an Orlicz sequence space. For M(x) = xp,
1 ≤ p < ∞, the space lM coincide with the classical sequence space lp.

Recently Parashar and Choudhary [9] have introduced and examined some prop-
erties of four sequence spaces defined by using an Orlicz function M , which gener-
alized the well-known Orlicz sequence space lM and strongly summable sequence
spaces [C, 1, p], [C, 1, p]0 and [C, 1, p]∞. It may be noted that the spaces of strongly
summable sequences were discussed by Maddox [5].

Quite recently E. Savaş [11] has also used an Orlicz function to construct some
sequence spaces.

In the present paper we introduce a new concept of λ-strong convergence with
respect to an Orlicz function and examine some properties of the resulting sequence
spaces. Furthermore it is shown that if a sequence is λ-strongly convergent with
respect to an Orlicz function then it is λ-statistically convergent.

We now introduce the generalizations of the spaces of λ-strongly.
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We have

Definition 1. Let M be an Orlicz function and p = (pk) be any sequence of
strictly positive real numbers.

We define the following sequence spaces:

[V, M, p] =

{

x = (xk) : lim
n

1

λn

∑

k∈In

[

M

( |xk − `|
ρ

)]pk

= 0 for some l and ρ > 0

}

[V, M, p]0 =

{

x = (xk) : lim
n

1

λn

∑

k∈In

[

M

( |xk|
ρ

)]pk

= 0 for some ρ > 0

}

[V, M, p]∞ =

{

x = (xk) : sup
n

1

λn

∑

k∈In

[

M

( |xk|
ρ

)]pk

< ∞ for some ρ > 0

}

.

We denote [V, M, p], [V, M, p]0 and [V, M, p]∞ as [V, M ], [V, M ]0 and [V, M ]∞
when pk = 1 for all k. If x ∈ [V, M ] we say that x is of λ-strongly convergent
with respect to the Orlicz function M . If M(x) = x, pk = 1 for all k, then
[V, M, p] = [V, λ], [V, M, p]0 = [V, λ]0 and [V, M, p]∞ = [V, λ]∞. If λn = n then,
[V, M, p], [V, M, p]0 and [V, M, p]∞ reduce the [C, M, p], [C, M, p]0 and [C, M, p]∞
which were studied Parashar and Choudhary [9].

2. Main Results

In this section we examine some topological properties of [V, M, p], [V, M, p]0
and [V, M, p]∞ spaces.

Theorem 1. For any Orlicz function M and any sequence p = (pk) of strictly

positive real numbers, [V, M, p], [V, M, p]0 and [V, M, p]∞ are linear spaces over

the set of complex numbers.

Proof. We shall prove only for [V, M, p]0. The others can be treated similarly.
Let x, y ∈ [V, M, p]0 and α, β ∈ C. In order to prove the result we need to find
some ρ3 > 0 such that

lim
n

1

λn

∑

k∈In

[

M

( |αxk + βyk|
ρ3

)]pk

= 0 .

Since x, y ∈ [V, M, p]0, there exist a positive some ρ1 and ρ2 such that

lim
n

1

λn

∑

k∈In

[

M

( |xk|
ρ1

)]pk

= 0 and lim
n

1

λn

∑

k∈In

[

M

( |yk|
ρ2

)]pk

= 0 .



36 E. SAVAŞ, R. SAVAŞ

Define ρ3 = max (2|α|ρ1, 2|β|ρ2). Since M is non-decreasing and convex,

1

λn

∑

k∈In

[

M

( |αxk + βyk|
ρ3

)]pk

≤ 1

λn

∑

k∈In

[

M

( |αxk |
ρ3

+
|βyk|
ρ3

)]pk

≤ 1

λn

∑

k∈In

1

2pk

[

M

( |xk|
ρ1

)

+ M

( |yk|
ρ2

)]pk

≤ 1

λn

∑

k∈In

[

M

( |xk|
ρ1

)

+ M

( |yk|
ρ2

)]pk

≤ K · 1

λn

∑

k∈In

[

M

( |xk |
ρ1

)]pk

+ K
1

λn

∑

k∈In

[

M

( |yk|
ρ2

)]pk

→ 0

as n → ∞, where K = max
(

1, 2H−1
)

, H = sup pk, so that αx + βy ∈ [V, M, p]0.
This completes the proof.

Theorem 2. For any Orlicz function M and a bounded sequence p = (pk) of

strictly positive real numbers, [V, M, p]0 is a total paranormed spaces with

g(x) = inf







ρpn/H :

(

1

λn

∑

k∈In

[

M

( |xk|
ρ

)]pk

)1/H

≤ 1 , n = 1, 2, 3, . . .







.

where H = max(1, sup pk).

Proof. Clearly g(x) = g(−x). By using Theorem 1, for a α = β = 1, we get
g(x + y) ≤ g(x) + g(y). Since M(0) = 0, we get inf{ρpn/H} = 0 for x = 0.

Conversely, suppose g(x) = 0, then

inf







ρpn/H :

(

1

λn

∑

k∈In

[

M

( |xk |
ρ

)]pk

)1/H

≤ 1







= 0 .

This implies that for a given ε > 0, there exists some ρε (0 < ρε < ε) such that
(

1

λn

∑

k∈In

[

M

( |xk|
ρε

)]pk

)1/H

≤ 1 .

Thus,
(

1

λn

∑

k∈In

[

M

( |xk |
ε

)]pk

)1/H

≤
(

1

λn

∑

k∈In

[

M

( |xk|
ρε

)]pk

)1/H

≤ 1 ,

for each n.

Suppose that xnm
6= 0 for some m ∈ In. Let ε → 0, then

(

|xnm
|

ε

)

→ ∞. It follows

that
(

1

λn

∑

k∈In

[

M

( |xnm
|

ε

)]pk

)1/H

→ ∞
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which is a contradiction. Therefore xnm
= 0 for each m. Finally, we prove that

scalar multiplication is continuous. Let µ be any complex number. By definition

g(µx) = inf







ρpn/H :

(

1

λn

∑

k∈In

[

M

( |µxk|
ρ

)]pk

)1/H

≤ 1 , n = 1, 2, 3, . . .







.

Then

g(µx) = inf







(|µ|s)pn/H
:

(

1

λn

∑

k∈In

[

M

( |xk|
s

)]pk

)1/H

≤ 1 , n = 1, 2, 3, . . .







where s = ρ/|µ|. Since |µ|pn ≤ max (1, |µ|sup pn), we have

g(µx) ≤ (max (1, |µ|suppn))
1/H

× inf







spn/H :

(

1

λn

∑

k∈In

[

M

( |xk |
s

)]pk

)1/H

≤ 1 , n = 1, 2, 3, . . .







which converges to zero as x converges to zero in [V, M, p]0.
Now suppose µm → 0 and x is fixed in [V, M, p]0. For arbitrary ε > 0, let N be

a positive integer such that

1

λn

∑

k∈In

[

M

( |xk |
ρ

)]pk

< (ε/2)
H

for some ρ > 0 and all n > N .

This implies that

1

λn

∑

k∈In

[

M

( |xk|
ρ

)]pk

< ε/2 for some ρ > 0 and all n > N .

Let 0 < |µ| < 1, using convexity of M , for n > N , we get

1

λn

∑

k∈In

[

M

( |µxk |
ρ

)]pk

<
1

λn

∑

k∈In

[

|µ|M
( |xk |

ρ

)]pk

< (ε/2)
H

.

Since M is continuous everywhere in [0,∞), then for n ≤ N

f(t) =
1

λn

∑

k∈In

[

M

( |txk|
ρ

)]pk

is continuous at 0. So there is 1 > δ > 0 such that |f(t)| < (ε/2)H for 0 < t < δ.
Let K be such that |µm| < δ for m > K then for m > K and n ≤ N

(

1

λn

∑

k∈In

[

M

( |µmxk |
ρ

)]pk

)1/H

< ε/2 .

Thus
(

1

λn

∑

k∈In

[

M

( |µmxk |
ρ

)]pk

)1/H

< ε
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for m > K and all n, so that g(µx) → 0 (µ → 0).

Definition 2 ([1]). An Orlicz function M is said to satisfy ∆2-condition for all
values of u, if there exists a constant K > 0 such that M(2u) ≤ KM(u), u ≥ 0.

It is easy to see that always K > 2. The ∆2-condition is equivalent to the
satisfaction of inequality M(lu) ≤ K(l)M(u), for all values of u and for l > 1.

Theorem 3. For any Orlicz function M which satisfies ∆2-condition, we have

[V, λ] ⊆ [V, M ].

Proof. Let x ∈ [V, λ] so that

Tn =
1

λn

∑

k∈In

|xk − `| → 0 as n → ∞ for some ` .

Let ε > 0 and choose δ with 0 < δ < 1 such that M(t) < ε for 0 ≤ t ≤ δ. Write
yk = |xk − `| and consider

1

λn

∑

k∈In

M (|yk|) =
∑

1
+
∑

2

where the first summation is over yk ≤ δ and the second summation over yk > δ.
Since, M is continuous

∑

1
< λnε

and for yk > δ we use the fact that yk < yk/δ < 1 + yk/δ. Since M is non
decreasing and convex, it follows that

M(yk) < M
(

1 + δ−1yk

)

<
1

2
M(2) +

1

2
M
(

2δ−1yk

)

Since M satisfies ∆2-condition there is a constant K > 2 such that M
(

2δ−1yk

)

≤
1
2
Kδ−1ykM(2), therefore

M(yk) <
1

2
Kδ−1ykM(2) +

1

2
Kδ−1ykM(2)

= Kδ−1ykM(2) .

Hence
∑

2
M(yk) ≤ Kδ−1M(2)λnTn

which together with
∑

1 ≤ ελn yields [V, λ] ⊆ [V, M ]. This completes proof.

The method of the proof of Theorem 3 shows that for any Orlicz function M
which satisfies ∆2-condition; we have [V, λ]0 ⊂ [V, M ]0 and [V, λ]∞ ⊂ [V, M ]∞.

Theorem 4. Let 0 ≤ pk ≤ qk and
(

qk

/

pk

)

be bounded. Then [V, M, q] ⊂ [V, M, p].

The proof of Theorem 4 used the ideas similar to those used in proving Theo-
rem 7 of Parashar and Choudhary [9].

We now introduce a natural relationship between strong convergence with re-
spect to an Orlicz function and λ-statistical convergence. Recently, Mursaleen [7]
introduced the concept of statistical convergence as follows:
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Definition 3. A sequence x = (xk) is said to be λ-statistically convergent or
sλ-statistically convergent to L if for every ε > 0

lim
n

1

λn
|{k ∈ In : |xk − L| ≥ ε}| = 0 ,

where the vertical bars indicate the number of elements in the enclosed set.

In this case we write sλ − lim x = L or xk → L(sλ) and sλ = {x : ∃L ∈ R :
sλ − lim x = L}.

Later on, λ-statistical convergence was generalized by Savaş [12].
We now establish an inclusion relation between [V, M ] and sλ.

Theorem 5. For any Orlicz function M , [V, M ] ⊂ sλ.

Proof. Let x ∈ [V, M ] and ε > 0. Then

1

λn

∑

k∈In

M

( |xk − `|
ρ

)

≥ 1

λn

∑

k∈In,|xk−l|≥ε

M

( |xk − `|
ρ

)

≥ 1

λn
M
(

ε
/

ρ
)

· |{k ∈ In : |xk − `| ≥ ε}|

from which it follows that x ∈ sλ.
To show that sλ strictly contains [V, M ], we proceed as in [7]. We define x = (xk)

by xk = k if n −
[√

λn

]

+ 1 ≤ k ≤ n and xk = 0 otherwise. Then x /∈ `∞ and for
every ε (0 < ε ≤ 1)

1

λn
|{k ∈ In : |xk − 0| ≥ ε}| =

[√
λn

]

λn
→ 0 as n → ∞

i.e. xk → 0 (sλ), where [ ] denotes the greatest integer function. On the other
hand,

1

λn

∑

k∈In

M

( |xk − 0|
ρ

)

→ ∞ (n → ∞)

i.e. xk 6→ 0 [V, M ]. This completes the proof.
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