ARCHIVUM MATHEMATICUM (BRNO) Tomus 40 (2004), 33 – 40

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

E. SAVAŞ AND R. SAVAŞ

ABSTRACT. In this paper we introduce a new concept of λ -strong convergence with respect to an Orlicz function and examine some properties of the resulting sequence spaces. It is also shown that if a sequence is λ -strongly convergent with respect to an Orlicz function then it is λ -statistically convergent.

1. INTRODUCTION

The concept of paranorm is closely related to linear metric spaces. It is a generalization of that of absolute value. Let X be a linear space. A function $p: X \to \mathbb{R}$ is called *paranorm*, if

- (P.1) $p(0) \ge 0$
- $(P.2) \quad p(x) \ge 0 \text{ for all } x \in X$
- (P.3) p(-x) = p(x) for all $x \in X$
- (P.4) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$ (triangle inequality)

(P.5) if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda(n \to \infty)$ and (x_n) is a sequence of vectors with $p(x_n - x) \to 0$ $(n \to \infty)$, then $p(\lambda_n x_n - \lambda x) \to 0$ $(n \to \infty)$ (continuity of multiplication by scalars).

A paranorm p for which p(x) = 0 implies x = 0 is called *total*. It is well known that the metric of any linear metric space is given by some total paranorm (cf. [14, Theorem 10.4.2, p.183]).

Let $\Lambda = (\lambda_n)$ be a non decreasing sequence of positive reals tending to infinity and $\lambda_1 = 1$ and $\lambda_{n+1} \leq \lambda_n + 1$.

The generalized de la Vallée-Poussin means is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k \,,$$

where $I_n = [n - \lambda_n + 1, n]$. A sequence $x = (x_k)$ is said to be (V, λ) -summable to a number ℓ (see [2]) if $t_n(x) \to \ell$ as $n \to \infty$.

²⁰⁰⁰ Mathematics Subject Classification: 40D05, 40A05.

Key words and phrases: sequence spaces, Orlicz function, de la Vallée-Poussin means. Received January 8, 2002.

We write

$$[V,\lambda]_0 = \left\{ x = x_k : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} |x_k| = 0 \right\}$$
$$[V,\lambda] = \left\{ x = x_k : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} |x_k - \ell e| = 0, \text{ for some } \ell \in C \right\}$$

and

$$[V,\lambda]_{\infty} = \left\{ x = x_k : \sup_n \frac{1}{\lambda_n} \sum_{k \in I_n} |x_k| < \infty \right\}.$$

For the sets of sequences that are strongly summable to zero, strongly summable and strongly bounded by the de la Vallée-Poussin method. In the special case where $\lambda_n = n$ for n = 1, 2, 3, ..., the sets $[V, \lambda]_0$, $[V, \lambda]$ and $[V, \lambda]_{\infty}$ reduce to the sets ω_0 , ω and ω_{∞} introduced and studied by Maddox [5].

Following Lindenstrauss and Tzafriri [4], we recall that an Orlicz function M is a continuous, convex, non-decreasing function defined for $x \ge 0$ such that M(0) = 0 and $M(x) \ge 0$ for x > 0.

If convexity of Orlicz function M is replaced by $M(x+y) \leq M(x) + M(y)$ then this function is called a modulus function, defined and discussed by Nakano [8], Ruckle [10], Maddox [6] and others.

Lindenstrauss and Tzafriri used the idea of Orlicz function to construct the sequence space

$$l_M = \left\{ x = (x_k) : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \quad \text{for some} \quad \rho > 0 \right\} \,.$$

The space l_M with the norm

$$||x|| = \inf\left\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\right\}$$

becomes a Banach space which is called an Orlicz sequence space. For $M(x) = x^p$, $1 \le p < \infty$, the space l_M coincide with the classical sequence space l_p .

Recently Parashar and Choudhary [9] have introduced and examined some properties of four sequence spaces defined by using an Orlicz function M, which generalized the well-known Orlicz sequence space l_M and strongly summable sequence spaces $[C, 1, p], [C, 1, p]_0$ and $[C, 1, p]_{\infty}$. It may be noted that the spaces of strongly summable sequences were discussed by Maddox [5].

Quite recently E. Savaş [11] has also used an Orlicz function to construct some sequence spaces.

In the present paper we introduce a new concept of λ -strong convergence with respect to an Orlicz function and examine some properties of the resulting sequence spaces. Furthermore it is shown that if a sequence is λ -strongly convergent with respect to an Orlicz function then it is λ -statistically convergent.

We now introduce the generalizations of the spaces of λ -strongly.

We have

Definition 1. Let M be an Orlicz function and $p = (p_k)$ be any sequence of strictly positive real numbers.

We define the following sequence spaces:

$$[V, M, p] = \left\{ x = (x_k) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|x_k - \ell|}{\rho}\right) \right]^{p_k} = 0 \text{ for some } l \text{ and } \rho > 0 \right\}$$
$$[V, M, p]_0 = \left\{ x = (x_k) : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|x_k|}{\rho}\right) \right]^{p_k} = 0 \text{ for some } \rho > 0 \right\}$$
$$[V, M, p]_{\infty} = \left\{ x = (x_k) : \sup_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|x_k|}{\rho}\right) \right]^{p_k} < \infty \text{ for some } \rho > 0 \right\}.$$

We denote [V, M, p], $[V, M, p]_0$ and $[V, M, p]_\infty$ as [V, M], $[V, M]_0$ and $[V, M]_\infty$ when $p_k = 1$ for all k. If $x \in [V, M]$ we say that x is of λ -strongly convergent with respect to the Orlicz function M. If M(x) = x, $p_k = 1$ for all k, then $[V, M, p] = [V, \lambda]$, $[V, M, p]_0 = [V, \lambda]_0$ and $[V, M, p]_\infty = [V, \lambda]_\infty$. If $\lambda_n = n$ then, [V, M, p], $[V, M, p]_0$ and $[V, M, p]_\infty$ reduce the [C, M, p], $[C, M, p]_0$ and $[C, M, p]_\infty$ which were studied Parashar and Choudhary [9].

2. Main Results

In this section we examine some topological properties of [V, M, p], $[V, M, p]_0$ and $[V, M, p]_{\infty}$ spaces.

Theorem 1. For any Orlicz function M and any sequence $p = (p_k)$ of strictly positive real numbers, [V, M, p], $[V, M, p]_0$ and $[V, M, p]_{\infty}$ are linear spaces over the set of complex numbers.

Proof. We shall prove only for $[V, M, p]_0$. The others can be treated similarly. Let $x, y \in [V, M, p]_0$ and $\alpha, \beta \in C$. In order to prove the result we need to find some $\rho_3 > 0$ such that

$$\lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|\alpha x_k + \beta y_k|}{\rho_3}\right) \right]^{p_k} = 0.$$

Since $x, y \in [V, M, p]_0$, there exist a positive some ρ_1 and ρ_2 such that

$$\lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|x_k|}{\rho_1}\right) \right]^{p_k} = 0 \quad \text{and} \quad \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|y_k|}{\rho_2}\right) \right]^{p_k} = 0.$$

Define $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M is non-decreasing and convex,

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|\alpha x_k + \beta y_k|}{\rho_3}\right) \right]^{p_k} \leq \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|\alpha x_k|}{\rho_3} + \frac{|\beta y_k|}{\rho_3}\right) \right]^{p_k}$$
$$\leq \frac{1}{\lambda_n} \sum_{k \in I_n} \frac{1}{2^{p_k}} \left[M\left(\frac{|x_k|}{\rho_1}\right) + M\left(\frac{|y_k|}{\rho_2}\right) \right]^{p_k}$$
$$\leq \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|x_k|}{\rho_1}\right) + M\left(\frac{|y_k|}{\rho_2}\right) \right]^{p_k}$$
$$\leq K \cdot \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|x_k|}{\rho_1}\right) \right]^{p_k} + K \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|y_k|}{\rho_2}\right) \right]^{p_k} \to 0$$

as $n \to \infty$, where $K = \max\left(1, 2^{H-1}\right)$, $H = \sup p_k$, so that $\alpha x + \beta y \in [V, M, p]_0$. This completes the proof.

Theorem 2. For any Orlicz function M and a bounded sequence $p = (p_k)$ of strictly positive real numbers, $\left[V, M, p\right]_0$ is a total paranormed spaces with

$$g(x) = \inf\left\{\rho^{p_n/H} : \left(\frac{1}{\lambda_n}\sum_{k\in I_n} \left[M\left(\frac{|x_k|}{\rho}\right)\right]^{p_k}\right)^{1/H} \le 1, \quad n = 1, 2, 3, \dots\right\}.$$

where $H = \max(1, \sup p_k)$.

Proof. Clearly g(x) = g(-x). By using Theorem 1, for a $\alpha = \beta = 1$, we get $g(x+y) \le g(x) + g(y)$. Since M(0) = 0, we get $\inf\{\rho^{p_n/H}\} = 0$ for x = 0.

Conversely, suppose g(x) = 0, then

$$\inf\left\{\rho^{p_n/H}: \left(\frac{1}{\lambda_n}\sum_{k\in I_n}\left[M\left(\frac{|x_k|}{\rho}\right)\right]^{p_k}\right)^{1/H} \le 1\right\} = 0.$$

This implies that for a given $\varepsilon > 0$, there exists some ρ_{ε} $(0 < \rho_{\varepsilon} < \varepsilon)$ such that

$$\left(\frac{1}{\lambda_n}\sum_{k\in I_n}\left[M\left(\frac{|x_k|}{\rho_{\varepsilon}}\right)\right]^{p_k}\right)^{1/H} \le 1.$$

Thus,

$$\left(\frac{1}{\lambda_n}\sum_{k\in I_n} \left[M\left(\frac{|x_k|}{\varepsilon}\right)\right]^{p_k}\right)^{1/H} \le \left(\frac{1}{\lambda_n}\sum_{k\in I_n} \left[M\left(\frac{|x_k|}{\rho_{\varepsilon}}\right)\right]^{p_k}\right)^{1/H} \le 1,$$

for each n.

Suppose that $x_{n_m} \neq 0$ for some $m \in I_n$. Let $\varepsilon \to 0$, then $\left(\frac{|x_{n_m}|}{\varepsilon}\right) \to \infty$. It follows that

$$\left(\frac{1}{\lambda_n}\sum_{k\in I_n}\left[M\left(\frac{|x_{n_m}|}{\varepsilon}\right)\right]^{p_k}\right)^{1/H}\to\infty$$

which is a contradiction. Therefore $x_{n_m} = 0$ for each m. Finally, we prove that scalar multiplication is continuous. Let μ be any complex number. By definition

$$g(\mu x) = \inf\left\{\rho^{p_n/H} : \left(\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|\mu x_k|}{\rho}\right)\right]^{p_k}\right)^{1/H} \le 1, \quad n = 1, 2, 3, \dots\right\}.$$

Then

$$g(\mu x) = \inf\left\{ \left(|\mu|s)^{p_n/H} : \left(\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|x_k|}{s}\right) \right]^{p_k} \right)^{1/H} \le 1, \quad n = 1, 2, 3, \dots \right\}$$

where $s = \rho/|\mu|$. Since $|\mu|^{p_n} \le \max(1, |\mu|^{\sup p_n})$, we have

$$g(\mu x) \leq \left(\max\left(1, |\mu|^{\sup p_n}\right)\right)^{1/H} \times \inf\left\{s^{p_n/H} : \left(\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|x_k|}{s}\right)\right]^{p_k}\right)^{1/H} \leq 1, \quad n = 1, 2, 3, \dots\right\}$$

which converges to zero as x converges to zero in $[V, M, p]_0$.

Now suppose $\mu_m \to 0$ and x is fixed in $[V, M, p]_0$. For arbitrary $\varepsilon > 0$, let N be a positive integer such that

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|x_k|}{\rho}\right) \right]^{p_k} < (\varepsilon/2)^H \quad \text{for some} \quad \rho > 0 \quad \text{and all} \quad n > N \,.$$

This implies that

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|x_k|}{\rho}\right) \right]^{p_k} < \varepsilon/2 \quad \text{for some} \quad \rho > 0 \quad \text{and all} \quad n > N \,.$$

Let $0 < |\mu| < 1$, using convexity of M, for n > N, we get

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|\mu x_k|}{\rho}\right) \right]^{p_k} < \frac{1}{\lambda_n} \sum_{k \in I_n} \left[|\mu| M\left(\frac{|x_k|}{\rho}\right) \right]^{p_k} < (\varepsilon/2)^H .$$

Since M is continuous everywhere in $[0, \infty)$, then for $n \leq N$

$$f(t) = \frac{1}{\lambda_n} \sum_{k \in I_n} \left[M\left(\frac{|tx_k|}{\rho}\right) \right]^{p_k}$$

is continuous at 0. So there is $1 > \delta > 0$ such that $|f(t)| < (\varepsilon/2)^H$ for $0 < t < \delta$. Let K be such that $|\mu_m| < \delta$ for m > K then for m > K and $n \le N$

$$\left(\frac{1}{\lambda_n}\sum_{k\in I_n}\left[M\left(\frac{|\mu_m x_k|}{\rho}\right)\right]^{p_k}\right)^{1/H} < \varepsilon/2\,.$$

Thus

$$\left(\frac{1}{\lambda_n}\sum_{k\in I_n}\left[M\left(\frac{|\mu_m x_k|}{\rho}\right)\right]^{p_k}\right)^{1/H} < \varepsilon$$

for m > K and all n, so that $g(\mu x) \to 0 \ (\mu \to 0)$.

Definition 2 ([1]). An Orlicz function M is said to satisfy Δ_2 -condition for all values of u, if there exists a constant K > 0 such that $M(2u) \leq KM(u), u \geq 0$.

It is easy to see that always K > 2. The Δ_2 -condition is equivalent to the satisfaction of inequality $M(lu) \leq K(l)M(u)$, for all values of u and for l > 1.

Theorem 3. For any Orlicz function M which satisfies Δ_2 -condition, we have $[V, \lambda] \subseteq [V, M]$.

Proof. Let $x \in [V, \lambda]$ so that

$$T_n = rac{1}{\lambda_n} \sum_{k \in I_n} |x_k - \ell| o 0 \quad ext{as} \quad n o \infty \quad ext{for some} \quad \ell \, .$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M(t) < \varepsilon$ for $0 \le t \le \delta$. Write $y_k = |x_k - \ell|$ and consider

$$\frac{1}{\lambda_n} \sum_{k \in I_n} M\left(|y_k|\right) = \sum_1 + \sum_2$$

where the first summation is over $y_k \leq \delta$ and the second summation over $y_k > \delta$. Since, M is continuous

$$\sum\nolimits_1 < \lambda_n \varepsilon$$

and for $y_k > \delta$ we use the fact that $y_k < y_k/\delta < 1 + y_k/\delta$. Since M is non decreasing and convex, it follows that

$$M(y_k) < M\left(1 + \delta^{-1}y_k\right) < \frac{1}{2}M(2) + \frac{1}{2}M\left(2\delta^{-1}y_k\right)$$

Since M satisfies Δ_2 -condition there is a constant K > 2 such that $M\left(2\delta^{-1}y_k\right) \leq \frac{1}{2}K\delta^{-1}y_kM(2)$, therefore

$$M(y_k) < \frac{1}{2} K \delta^{-1} y_k M(2) + \frac{1}{2} K \delta^{-1} y_k M(2)$$

= $K \delta^{-1} y_k M(2)$.

Hence

$$\sum_{2} M(y_k) \le K \delta^{-1} M(2) \lambda_n T_n$$

which together with $\sum_{1} \leq \varepsilon \lambda_{n}$ yields $[V, \lambda] \subseteq [V, M]$. This completes proof. \Box

The method of the proof of Theorem 3 shows that for any Orlicz function M which satisfies Δ_2 -condition; we have $[V, \lambda]_0 \subset [V, M]_0$ and $[V, \lambda]_{\infty} \subset [V, M]_{\infty}$.

Theorem 4. Let $0 \le p_k \le q_k$ and (q_k/p_k) be bounded. Then $[V, M, q] \subset [V, M, p]$.

The proof of Theorem 4 used the ideas similar to those used in proving Theorem 7 of Parashar and Choudhary [9].

We now introduce a natural relationship between strong convergence with respect to an Orlicz function and λ -statistical convergence. Recently, Mursaleen [7] introduced the concept of statistical convergence as follows:

Definition 3. A sequence $x = (x_k)$ is said to be λ -statistically convergent or s_{λ} -statistically convergent to L if for every $\varepsilon > 0$

$$\lim_{n} \frac{1}{\lambda_n} |\{k \in I_n : |x_k - L| \ge \varepsilon\}| = 0,$$

where the vertical bars indicate the number of elements in the enclosed set.

In this case we write $s_{\lambda} - \lim x = L$ or $x_k \to L(s_{\lambda})$ and $s_{\lambda} = \{x : \exists L \in R : s_{\lambda} - \lim x = L\}.$

Later on, λ -statistical convergence was generalized by Savaş [12].

We now establish an inclusion relation between [V, M] and s_{λ} .

Theorem 5. For any Orlicz function M, $[V, M] \subset s_{\lambda}$.

Proof. Let $x \in [V, M]$ and $\varepsilon > 0$. Then

$$\frac{1}{\lambda_n} \sum_{k \in I_n} M\left(\frac{|x_k - \ell|}{\rho}\right) \ge \frac{1}{\lambda_n} \sum_{k \in I_n, |x_k - \ell| \ge \varepsilon} M\left(\frac{|x_k - \ell|}{\rho}\right)$$
$$\ge \frac{1}{\lambda_n} M\left(\varepsilon/\rho\right) \cdot |\{k \in I_n : |x_k - \ell| \ge \varepsilon\}|$$

from which it follows that $x \in s_{\lambda}$.

To show that s_{λ} strictly contains [V, M], we proceed as in [7]. We define $x = (x_k)$ by $x_k = k$ if $n - \left[\sqrt{\lambda_n}\right] + 1 \le k \le n$ and $x_k = 0$ otherwise. Then $x \notin \ell_{\infty}$ and for every ε $(0 < \varepsilon \le 1)$

$$\frac{1}{\lambda_n} |\{k \in I_n : |x_k - 0| \ge \varepsilon\}| = \frac{\left[\sqrt{\lambda_n}\right]}{\lambda_n} \to 0 \quad \text{as} \quad n \to \infty$$

i.e. $x_k \to 0(s_\lambda)$, where [] denotes the greatest integer function. On the other hand,

$$\frac{1}{\lambda_n}\sum_{k\in I_n}M\left(\frac{|x_k-0|}{\rho}\right)\to\infty\qquad(n\to\infty)$$

i.e. $x_k \neq 0 [V, M]$. This completes the proof.

References

- Krasnoselski, M. A. and Rutitsky, Y. B., Convex functions and Orlicz Spaces, Groningen, the Netherlands, 1961.
- [2] Leindler, L., Über de la Vallee Pousinsche Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Hung. 16 (1965), 375–378.
- [3] Lindenstrauss, J., Some aspects of the theory of Banach spaces, Adv. Math. 5 (1970), 159–180.
- [4] Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces, Israel J. Math. 10 (3) (1971), 379–390.
- [5] Maddox, I. J., Spaces of strongly summable sequences, Quart. J. Math. Oxford Ser. (2), 18 (1967), 345–355.

- [6] Maddox, I. J., Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc. 100 (1986), 161–166.
- [7] Mursaleen, λ -statistical convergence, Math. Slovaca **50**, No.1 (2000), 111–115.
- [8] Nakano, H., Concave modulus, J. Math. Soc. Japan 5 (1953), 29-49.
- [9] Parashar, S. D. and Choudhary, B., Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math. 25 (14) (1994), 419–428.
- [10] Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973–978.
- [11] Savaş, E., Strongly almost convergent sequences defined by Orlicz functions, Comm. Appl. Anal. 4 (2000), 453–458.
- [12] Savaş, E., Strong almost convergence and almost λ -statistical convergence, Hokkaido Math. J. **24**(3), (2000), 531–536.
- [13] Savaş, E. and Rhoades, B. E., On some new sequence spaces of invariant means defined by Orlicz functions, Math. Inequal. Appl. 5(2) (2002), 271–281.
- [14] Wilansky, A., Summability through Functional Analysis, North-Holland Math. Stud. 85 (1984).

Department of Mathematics, Yüzüncü Yil Üniversity Van 65080, Turkey *E-mail*: ekremsavas@yahoo.com