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A NONLINEAR DIFFERENTIAL EQUATION INVOLVING

REFLECTION OF THE ARGUMENT

T. F. MA, E. S. MIRANDA AND M. B. DE SOUZA CORTES

Abstract. We study the nonlinear boundary value problem involving reflec-
tion of the argument

−M
(

∫

1

−1

|u′(s)|2 ds
)

u′′(x) = f
(

x, u(x), u(−x)
)

x ∈ [−1, 1] ,

where M and f are continuous functions with M > 0. Using Galerkin ap-
proximations combined with the Brouwer’s fixed point theorem we obtain
existence and uniqueness results. A numerical algorithm is also presented.

1. Introduction

In this note we are concerned with the nonlinear differential equation

−M
(

∫ 1

−1

|u′(s)|2ds
)

u′′(x) = f
(

x, u(x), u(−x)
)

x ∈ [−1, 1](1.1)

subject to the boundary condition

u(−1) = u(1) = 0 ,(1.2)

where M : [0,∞) → R and f : [−1, 1]× R × R → R are continuous functions with
M satisfying:

∃ δ > 0 such that M(s) ≥ δ for all s ≥ 0 .(1.3)

The equation (1.1) is related to the stationary states of the Kirchhoff equation

utt −
[

c0 + c1

∫ L

0

|ux|2 dx

]

uxx = 0 ,

which is a classical nonlinear model for the study of the free vibrations in elastic
strings. The Kirchhoff equation was studied by several authors and we refer the
reader to the paper by A. Arosio and S. Panizzi [1] for a short survey of its
mathematical aspects and references. We also mention the papers [2] and [6] for
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others stationary problems of Kirchhoff type. On the other hand, the equation
(1.1) involves a reflection of the argument x in the nonlinearity f

(

x, u(x), u(−x)
)

.
Boundary value problem involving reflection of the argument was firstly considered
by J. Wiener and A. R. Aftabizadeh in [9], where (1.1) was studied with M =
1. Using Schauder’s fixed point theorem, they proved existence and uniqueness
results. Later, their results were extended or improved by several authors, for
example, Gupta [3], Hai [4], O’Regan [7] and Sharma [8].

We note that equation (1.1) has a nonlocal nonlinearity given by the function M .
Then instead using a direct application of the Degree arguments, our analysis is
based on the Galerkin approximations and a well known variation of the Brouwer’s
fixed point theorem whose statement is the following: Any continuous map from
R

n to R
n satisfying 〈F (u), u〉 ≥ 0 on the boundary ∂B(0, ρ), for some ρ > 0, has a

zero in the closed ball B(0, ρ). This result can be found, for example, in the book
by S. Kesavan ([5], Theorem 5.2.5). Our results are the following two theorems.

Theorem 1. Let us suppose that condition (1.3) holds. Let us suppose in addition

that there exist positive constants a, b such that

a + b <
δπ2

4
(1.4)

and satisfying

f(x, u, v)u ≤ a|u|2 + b|u| |v| + c|u| ,(1.5)

for all x ∈ [−1, 1], u, v ∈ R and any fixed constant c > 0. Then problem (1.1)–(1.2)
has at least one solution u ∈ C2([−1, 1]).

Theorem 2. Let us assume the assumptions of Theorem 1 with (1.5) replaced by

[f(x, u1, v1) − f(x, u2, v2)] (u1 − u2) ≤ a|u1 − u2|2 + b|u1 − u2| |v1 − v2| ,(1.6)

for all x ∈ [−1, 1] and u1, u2, v1, v2 ∈ R. Then if M is continuously differentiable

and ‖M ′‖∞ is sufficiently small, problem (1.1)–(1.2) has exactly one solution.

The proofs of the theorems are given in Section 2. In Section 3 we consider a
numerical example using the finite-difference method.

2. Existence and uniqueness

We begin with some notations. Let Hk(−1, 1) be the Sobolev space of the
functions u : [−1, 1] → R with the derivative uk−1 absolutely continuous and uk

in L2(−1, 1) and let H1
0 (−1, 1) = {u ∈ H1(−1, 1) : u(−1) = u(1) = 0}. In

H1
0 (−1, 1) we consider the norm ‖u‖H1

0

= ‖u′‖2, where ‖ · ‖p denotes standard Lp

norm. Then it is known that both embeddings H2(−1, 1)∩H1
0 (−1, 1) ↪→ H1

0 (−1, 1)
and H1

0 (−1, 1) ↪→ C0([−1, 1]) are compacts. Besides, the following Wirtinger type
inequalities

‖u‖2 ≤ 2

π
‖u′‖2 and ‖u‖1 ≤ 2

√
2

π
‖u′‖2(2.1)

hold for every u ∈ H1
0 (−1, 1).
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Proof of Theorem 1. The proof is given in three steps.

Step 1 – Approximate Problem: Let {ωk} be the complete orthonormal system for
H1

0 (−1, 1) given by the eigenfunctions of −ω′′ = λω with ω(−1) = ω(1) = 0. Let
us put

Vn = Span{ω1, · · · , ωn} .

Then Vn is isometric to R
n in the following way: Each v ∈ Vn is uniquely asso-

ciated to ξ = (ξ1, · · · , ξn) ∈ R
n through the relation v =

∑

ξkωk. Since {ωk} is
orthonormal in H1

0 (−1, 1), we see that

‖v‖2
Vn

= ‖v′‖2
2 =

n
∑

k=1

ξ2
k = ‖ξ‖2

Rn .

We search for a function un ∈ Vn such that for k = 1, 2, · · · , n.
∫ 1

−1

[

M(‖u′

n‖2
2)u

′′

n(x) + f(x, un(x), un(−x))
]

ωk(x) dx = 0 .(2.2)

The equations in (2.2) define a nonlinear algebraic system in R
n. In fact, system

(2.2) can be written as Fn(v) = 0, where Fn is the operator from R
n to R

n whose
k-component is defined by

〈Fn(v), ωk〉 =

∫ 1

−1

[

−M(‖v′‖2
2)v

′′(x) − f(x, v(x), v(−x))
]

ωk(x) dx ,

which is continuous because of the continuity of the functions M and f . To solve
(2.2) we apply the Brouwer fixed point theorem. From (1.3), (1.5), (2.1) and
integration by parts, we have for v ∈ Vn

〈Fn(v), v〉 =

∫ 1

−1

[

−M(‖v′‖2
2)v

′′(x) − f(x, v(x), v(−x))
]

v(x) dx

≥ δ ‖v′‖2
2 − (a + b) ‖v‖2

2 − c‖v‖1

≥
[

δ − (a + b)
4

π2

]

‖v′‖2
2 −

c2
√

2

π
‖v′‖2 .

This shows the existence of R1 > 0, depending only on δ, a, b and c, such that
〈Fn(v), v〉 ≥ 0 if ‖v‖Vn

= R1. Then from the Brouwer fixed point theorem, system
(2.2) has a solution un ∈ Vn satisfying

‖u′

n‖2 ≤ R1 ∀n ∈ N .(2.3)

Step 2 – A Priori Estimates: Now we obtain an additional estimate in order
to have strong convergence of the approximate solutions un in H1

0 (−1, 1). Since
ω′′

k = −λkωk, we see that (2.2) holds with ωk replaced by ω′′

k and then

δ‖u′′

n‖2
2 ≤

∫ 1

−1

|f(x, un(x), un(−x))| |u′′

n(x)| dx .(2.4)

But from (2.3) we have that (un) is a bounded sequence in C0([−1, 1]) and there-
fore f(x, un(x), un(−x)) is uniformly bounded. This combined with (2.4) yields a
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constant R2 > 0 such that

‖u′′

n‖2 ≤ R2 ∀n ∈ N .(2.5)

Step 3 – Passage to the Limit: From the estimates (2.3) and (2.5) and the Sobolev
embeddings, there exists u ∈ H2(−1, 1) ∩ H1

0 (−1, 1) such that, going to a subse-
quence if necessary,

un → u strongly in H1
0 (−1, 1)

and

u′′

n ⇀ u′′ weakly in L2(−1, 1) .(2.6)

Then passing to the limit in (2.2) we conclude that

∫ 1

−1

[

−M(‖u′‖2
2)u

′′(x) − f(x, u(x), u(−x))
]

v(x) dx = 0

for all v ∈ H1
0 (−1, 1). Therefore u is a weak solution of (1.1)-(1.2) and, from the

regularity of f , we get that u is in fact a solution in C2([−1, 1]).

Proof of Theorem 2. The existence part follows from Theorem 1 since (1.6)
implies (1.5). In fact, taking u2 = v2 = 0 we see that

f(x, u1, v1) u1 ≤ a|u1|2 + b|u1| |v1| + c|u1| ,

with c = max{|f(x, 0, 0)|; x ∈ [−1, 1]}.
Now let u1 and u2 be two solutions of problem (1.1)–(1.2). Putting w = u1 − u2

we have

M(‖u′

1‖2
2)w

′′(x) = −
[

M(‖u′

1‖2
2) − M(‖u′

2‖2
2)
]

u′′

2(x)

− [f(x, u1(x), u1(−x)) − f(x, u2(x), u2(−x))] .

Then, multiplying this identity by w(x) and integrating by parts we have, after
some re arrangements,

M(‖u′

1‖2
2) ‖w′‖2

2 = −
[

M(‖u′

1‖2
2) − M(‖u′

2‖2
2)
]

∫ 1

−1

u′

2(x) w′(x) dx

+

∫ 1

−1

[f(x, u1(x), u1(−x)) − f(x, u2(x), u2(−x))] [u1(x) − u2(x)] dx .(2.7)

Next we note that the arguments used to obtain (2.3) also imply that every solution
u of (1.1)-(1.2) satisfies

‖u′‖2 ≤ R3 =
c2
√

2

π

(

δ − (a + b)
4

π2

)

−1

.
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Then, since this estimate is independent of ‖M ′‖∞, using the inequality |‖p‖2 −
‖q‖2| ≤ (‖p‖+ ‖q‖) ‖p− q‖, we infer that

∣

∣

∣

[

M(‖u′

1‖2
2) − M(‖u′

2‖2
2)
]

∫ 1

−1

u′

2(x) w′(x) dx
∣

∣

∣

≤ ‖M ′‖∞
∣

∣‖u′

1‖2
2 − ‖u′

2‖2
2

∣

∣ ‖u′

2‖2‖w′‖2

≤ ‖M ′‖∞ 2R2
3 ‖w′‖2

2.

Hence from (1.6) and (2.7) it follows that
[

δ − (a + b)
4

π2

]

‖w′‖2
2 ≤ ‖M ′‖∞ 2R2

3 ‖w′‖2
2 .

If ‖M ′‖∞ is sufficiently small, we conclude that ‖w′‖2 = 0 and hence w ≡ 0.

3. Numerical solutions

In this section we consider a numerical algorithm for the problem (1.1)-(1.2)
based on the finite-differences method. Let −1 = x0 < x1 < · · · < xn = 1 be
a discretization of the interval [−1, 1] with mesh size h = 2/n. Then putting
ui = u(xi), fi = f(xi, ui, un−i) and using central differences formula, the equation
(1.1) becomes

−ui−1 + 2ui − ui+1 = h2fiK
−1, 1 ≤ i ≤ n − 1 ,(3.1)

where K is the finite-difference approximation of M(
∫ 1

−1
u′2 dx). From the bound-

ary conditions we know that u0 = un = 0, and therefore the trapezoidal method
gives

K ≈ M

(

1

2h
(u2

1 + u2
n−1) +

1

4h

n−1
∑

i=1

(ui+1 − ui−1)
2

)

.

Now we can compute u1, · · · , un−1 by solving the nonlinear system (3.1) through
successive linearization combined with the Gauss–Seidel method. The basic algo-
rithm is the following.

1 - Choose initial guess u0

2 - For N = 0, 1, 2, 3, . . .
- compute K and fi(xi, u

N
i , uN

n−i), 1 ≤ i ≤ n − 1
- solve linear system (3.1)
- test convergence

3 - End iteration.

Next we give a numerical example. Let us consider problem (1.1)–(1.2) with

M(s) = 1 +
25

64
s2 and f(x, p, q) = −x6 + 2x4 + 2x3 − x2 + 10x + p2 − 2q .

The exact solution is u(x) = x−x3. Using u ≡ 0 as initial approximation and mesh
size h = 0.1, we have obtained the following error table, where EN = ‖uN − u‖∞
and εN = ‖uN − uN−1‖∞.
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Iteration N EN εN

1 0.33342 0.91629 · 10−1

50 0.14407 · 10−1 0.41263 · 10−3

100 0.70612 · 10−2 0.72186 · 10−4

200 0.63687 · 10−2 0.22164 · 10−5

300 0.64039 · 10−2 0.67990 · 10−7

400 0.64049 · 10−2 0.21000 · 10−8
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