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THE TANAKA–WEBSTER CONNECTION FOR ALMOST

S-MANIFOLDS AND CARTAN GEOMETRY

ANTONIO LOTTA AND ANNA MARIA PASTORE

Abstract. We prove that a CR-integrable almost S-manifold admits a ca-
nonical linear connection, which is a natural generalization of the Tanaka–
Webster connection of a pseudo-hermitian structure on a strongly pseudo-
convex CR manifold of hypersurface type. Hence a CR-integrable almost
S-structure on a manifold is canonically interpreted as a reductive Cartan
geometry, which is torsion free if and only if the almost S-structure is normal.
Contrary to the CR-codimension one case, we exhibit examples of non nor-
mal almost S-manifolds with higher CR-codimension, whose Tanaka–Webster
curvature vanishes.

1. Introduction

In [3] D. E. Blair initiated the study of the differential geometry of manifolds
carrying an U(k) × O(s)-structure. These are exactly the manifolds M which
admit an f -structure, i.e. a tensor field ϕ of type (1, 1) with constant rank 2k, and
such that ϕ3 + ϕ = 0. This kind of structure was investigated first by K. Yano in
[15]. An f–structure provides a splitting of the tangent bundle

TM = Ker(ϕ) ⊕ Im(ϕ)

and the restriction J of ϕ to D = Im(ϕ) is a partial complex structure, that is
J2 = −Id. Hence M is an almost CR manifold having CR-dimension k and CR-
codimension s = n−2k, where n = dimRM . Actually, an f -structure is equivalent
to an almost CR structure (D, J) together with the choice of a complementary
subbundle to D in TM . Here we restrain our attention to the case where the
subbundle Ker(ϕ) is trivial, i.e. the structure group can be further reduced to
U(k) × Is. In this case M is called an f -manifold with parallelizable kernel (f ·pk
manifold). From the CR point of view, this is equivalent to the triviality of the
annihilator D0M of the analytic tangent bundle D, which is the subbundle of the
cotangent bundle T ∗M whose fiber is D0

xM = {η ∈ T ∗
xM | η(X) = 0 ∀X ∈ Dx}.
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Notice that D0M is automatically trivial for any orientable almost CR manifold
of hypersurface type (s = 1); in this case, a trivialization η of D0M is usually called
a pseudohermitian structure and (M,D, J, η) is called a pseudohermitian manifold.

A metric f ·pk manifold is an f ·pk manifold endowed with a Riemannian metric
g such that

g(X,Y ) = g(ϕX,ϕY ) +

s
∑

i=1

ηi(X)ηi(Y )(1)

where {ηi}i=1,...,s is a fixed trivialization of D0M . Notice that ϕ is then skew-
-symmetric with respect to g.

In [4] an almost S-manifold is defined as a metric f ·pk manifold such that

dηi = Φ i = 1, . . . , s(2)

where Φ is the fundamental 2-form of the f ·pk structure, defined as usual by
Φ(X,Y ) = g(X,ϕY ).

This notion is a natural generalization of the concept of contact metric structure,
which corresponds to the case s = 1 (cf. [2]).

It is known that an orientable almost CR manifold (M,D, J) of hypersurface
type is an almost S-manifold with underlying almost CR structure (D, J) if and
only if i) J is partially integrable, i.e. [X,Y ] − [JX, JY ] ∈ D for all sections
X,Y of D, and ii) a pseudohermitian structure η can be chosen with positive
definite Levi form Lη . Recall that Lη is defined by Lη(X,Y ) = dη(JX, Y ) for all
X,Y ∈ D. When these two conditions are satisfied, a pseudohermitian structure
η as in ii) uniquely determines an f -structure ϕ extending J and a compatible
metric g satisfying the above conditions (1) and (2) with η1 = η. If moreover i)
is replaced by CR-integrability, (M,D, J) is called a strongly pseudoconvex CR
manifold (see e.g. [11]).

The strongly pseudoconvex CR manifolds have been investigated by several
authors, and one of their fundamental properties is the existence of a unique
linear connection ∇̃ such that the tensors ϕ, η, g are all ∇̃-parallel and whose
torsion satisfies

T̃ (X,Y ) = 2Φ(X,Y )ξ for all X,Y ∈ D,(3)

T̃ (ξ, ϕX) = −ϕT̃ (ξ,X) for all X ∈ X (M) .(4)

Here ξ is the dual vector field of η with respect to the metric g.
This connection was introduced first by N. Tanaka in [10], and independently by

Webster in [14]. We remark that ∇̃ actually depends not only on the CR structure
but also on the choice of the pseudohermitian structure η.

In this paper we provide a geometrical characterization of condition (2), show-

ing that a metric f ·pk manifold admits a connection ∇̃ having the same formal
properties as (3)-(4) (cf. (6)–(7) in sec. 2), with the additional requirement that

T̃ vanishes on Ker(ϕ), if and only if (2) holds and the almost CR structure (D, J)
is integrable. This connection is uniquely determined and hence we call it the
Tanaka–Webster connection of a CR-integrable almost S-manifold.
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This result is also interpreted from the point of view of Cartan’s method of
equivalence, showing that the datum of a CR-integrable almost S-structure on a
manifold admits a canonical interpretation as a reductive Cartan geometry (cf.
[9]).

We also obtain that, as a Cartan geometry, a CR-integrable almost S-structure
is torsion free if and only if the tensor field

N = [ϕ, ϕ] + 2dηi ⊗ ξi

vanishes, where [ϕ, ϕ] is the Nijenhuis torsion of ϕ, while {ξi} is the g-orthonormal
frame of Ker(ϕ) dual of {ηi}. This is the normality condition considered by Blair
in [3], where an almost S-manifold satisfying N = 0 is called an S-manifold.

Finally, we exhibit examples of ∇̃-flat non normal almost S-manifolds with
CR codimension s > 1. This is interesting since it is easily seen that a strongly
pseudoconvex CR manifold of hypersurface type with vanishing Tanaka–Webster
curvature is necessarily normal.

Acknowledgement. The authors are grateful to the referee for valuable sugges-
tions and remarks, especially as regards the examples in the last section.

2. The Tanaka–Webster connection of a CR-integrable almost

S-manifold

Let M2k+s be a metric f ·pk manifold with structure (ϕ, ξi, η
i, g).

Let ∇ be the Levi–Civita connection of g. Denote by Q the tensor field of type
(1, 2) on M defined by

Q(X,Y ) := (∇Xϕ)Y + Φ(X,ϕY )ξ̄ − g(hjX,Y )ξj(5)

− η̄(Y )ϕ2X + ηj(Y )hjX .

Here and in the following the sum symbol for repeated indices is omitted. In this
formula ξ̄ :=

∑s

i=1 ξi, η̄ :=
∑s

i=1 ηi, while hi is the operator hi = 1
2
Lξi

ϕ. Φ
denotes the fundamental 2-form defined by Φ(X,Y ) = g(X,ϕY ).

For basic properties of almost S-manifolds, we refer the reader to [4]. In par-
ticular, we have the following:

Proposition 2.1 ([4]). Assume that M is an almost S-manifold. Then:

1) Each hi is a self-adjoint operator anti-commuting with ϕ.

2) Each hi vanishes on Ker(ϕ) and takes values in D.

3) For each i, j = 1, . . . , s we have

∇ξi
ϕ = 0, ∇ξi

ξj = 0 ,

∇Xξi = −ϕ(X) − ϕhi(X) .

4) M is CR-integrable, that is the partial complex structure J induced by ϕ on

D = Im(ϕ) is formally integrable, if and only if Q ≡ 0.

In this section we prove the following geometric characterization of the CR-
-integrable almost S-manifolds:
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Theorem 2.2. Let M be a metric f ·pk-manifold with structure (ϕ, ξi, η
i, g). Then

M is a CR–integrable almost S-manifold if and only if it admits a linear connection

∇̃ with the following properties:

1) ∇̃ϕ = 0, ∇̃g = 0 and ∇̃ηi = 0 for each i ∈ {1, . . . , s};

2) The torsion T̃ of ∇̃ satisfies:

T̃ (X,Y ) = 2Φ(X,Y )ξ̄ for all X,Y ∈ D ,(6)

T̃ (ξi, ϕX) = −ϕT̃ (ξi, X) for all X ∈ X (M) , i ∈ {1, . . . , s} ,(7)

T̃ (ξi, ξj) = 0 , i, j ∈ {1, . . . , s} .(8)

Such a linear connection ∇̃ is uniquely determined.

Notice that in the case s = 1, condition (8) is vacuous, and a CR-integrable
almost S-manifold is a strictly pseudoconvex CR manifold of hypersurface type (cf.

e.g. [11], [13]); hence ∇̃ coincides with the Tanaka–Webster connection (cf. [10],
[13], [11]). For this reason, we shall adopt the name Tanaka–Webster connection

to refer to ∇̃ also in the higher CR-codimension case.
We remark that the factor 2 in (6) appears since we follow the convention of [5]

for the exterior derivative (the same convention is adopted in Blair’s book [2]).

To prove Theorem 2.2 we start by defining a tensor field H of type (1, 2),
H : X (M) ×X (M) → X (M), such that

H(X,Y ) = Φ(X,Y )ξ̄ + η̄(Y )ϕ(X) + η̄(X)ϕ(Y )

+ Φ(hjX,Y )ξj + ηj(Y )ϕhj(X) .

Lemma 2.3. For all X,Y, Z ∈ X (M) we have:

g(H(X,Y ), Z) + g(H(X,Z), Y ) = 0 ;(9)

moreover, if M is an almost S-manifold:

H(X,Y ) −H(Y,X) = 2Φ(X,Y )ξ̄ + ηj(Y )ϕhj(X) − ηj(X)ϕhj(Y )(10)

Proof. Notice that for all X,Y, Z ∈ X (M) we have

g(H(X,Y ), Z) = Φ(X,Y )η̄(Z) + Φ(Z,X)η̄(Y ) + Φ(Z, Y )η̄(X)

+ Φ(hjX,Y )ηj(Z) + Φ(Z, hjX)ηj(Y ) ;

interchanging Y and Z in this formula we get

g(H(X,Z), Y ) = Φ(X,Z)η̄(Y ) + Φ(Y,X)η̄(Z) + Φ(Y, Z)η̄(X)

+ Φ(hjX,Z)ηj(Y ) + Φ(Y, hjX)ηj(Z) ,

and (9) follows. To prove (10), it suffices to observe that, assuming that M is an
almost S manifold, then the operators hj are self–adjoint and they anti-commute
with ϕ; this yields

Φ(hjX,Y ) = Φ(hjY,X)

for all X,Y ∈ X (M), and this implies (10).
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Lemma 2.4. Assume that M admits a linear connection ∇̃ satisfying properties

1), 2) stated in Theorem 2.2. Then we have:

i) ∇̃ξi = 0 i ∈ {1, . . . , s};

ii) ∇̃ZX ∈ D for all X ∈ D and Z ∈ X (M);

iii) [ξi,D] ⊂ D;

iv) For all X ∈ X (M) and for each i ∈ {1, . . . , s}, we have

T̃ (ξi, X) = −ϕhi(X) = −
1

2
N(X, ξi) .(11)

Proof. i) Since ∇̃ is metric, we get, for all X,Y ∈ X (M):

g(∇̃Xξi, Y ) = X · g(ξi, Y ) − g(ξi, ∇̃XY )

= X · ηi(Y ) − ηi(∇̃XY ) = (∇̃Xη
i)(Y ) = 0 .

ii) This is clear since

ηi(∇̃ZX) = Z · ηi(X) − (∇̃Zη
i)X = 0 ;

iii) Expanding formula (7), and using i), we have

∇̃ξi
ϕX − [ξi, ϕX ] = −ϕ∇̃ξi

X + ϕ[ξi, X ] ;

using ∇̃ϕ = 0, this equation can be rewritten as follows:

2ϕ(∇̃ξi
X) = [ξi, ϕX ] + ϕ[ξi, X ] .(12)

Notice that this formula implies that for all X ∈ X (M), we have [ξi, ϕX ] ∈ D,
thus proving iii). Now, assume that X ∈ D; applying ϕ to both sides of (12), we
get

−2∇̃ξi
X = ϕ[ξi, ϕX ] − [ξi, X ]

which implies

T̃ (ξi, X) = −
1

2
{ϕ[ξi, ϕX ] + [ξi, X ]} .(13)

On the other hand, by definition

hi(X) =
1

2
{[ξi, ϕX ] − ϕ[ξi, X ]}

so that

ϕhi(X) =
1

2
{ϕ[ξi, ϕX ] + [ξi, X ]} .

This proves the equality
T̃ (ξi, X) = −ϕhi(X)

for X ∈ D. Since by hypothesis T̃ (ξi, ξj) = 0, in force of i) we also have [ξi, ξj ] = 0,
and this gives hi(ξj) = 0. Hence we conclude that the above equality is actually
valid for all X ∈ X (M). The lemma is proved.

Proof of Theorem 2.2. Define a linear connection ∇̃ on M by

∇̃ := ∇ +H(14)
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where ∇ is the Levi–Civita connection relative to g. We have

(∇̃Xϕ)Y = (∇Xϕ)Y +H(X,ϕY ) − ϕH(X,Y )

= (∇Xϕ)Y + Φ(X,ϕY )ξ̄ + g(hjX,ϕ
2Y )ξj

− η̄(Y )ϕ2X − ηj(Y )ϕ2hjX

= Q(X,Y ) + ηk(Y )(ηk(hjX) − ηj(hkX))ξj .

Notice that when M is an almost S-manifold, according to Prop. 2.1, since the
operators hj take values in D, the above formula simplifies to

∇̃ϕ = Q .(15)

Now, assume that M is a CR-integrable almost S-manifold. Then Q = 0, and
(15) yields ∇̃ϕ = 0. Moreover, since ∇g = 0, it is an immediate consequence of

(9) that ∇̃g = 0. Using the formula (Prop. 2.1)

∇Xξi = −ϕ(X) − ϕhi(X) ,

we also get

(∇̃X ηi)Y = Xg(Y, ξi) − ηi(∇̃XY )

= g(∇XY, ξi) + g(Y,∇Xξi) − ηi(∇XY ) − ηi(H(X,Y ))

= −g(Y, ϕX) − g(Y, ϕhiX) − g(H(X,Y ), ξi) = 0 .

Finally, notice that
T̃ (X,Y ) = H(X,Y ) −H(Y,X) ;

by virtue of (10), taking into account that each hi vanishes on Ker(ϕ), this implies

that T̃ has properties (6)–(8). We have thus proved the existence of a linear
connection having the properties stated in the theorem, under the assumption
that M is a CR-integrable almost S-manifold. To show the converse, we first
prove that the equations

dηi(X,Y ) = Φ(X,Y ) i ∈ {1, . . . , s}(16)

hold as a consequence of the existence of ∇̃. Indeed, if X,Y ∈ D, from (6) we have

∇̃XY − ∇̃Y X − [X,Y ] = 2Φ(X,Y )ξ̄ ,

which gives

g(∇̃XY, ξi) − g(∇̃YX, ξi) − ηi([X,Y ]) = 2Φ(X,Y ) .

Observe that, since ∇̃ is metric and ξi is parallel with respect to ∇̃, we have
g(∇̃XY, ξi) = g(∇̃Y X, ξi) = 0. Hence ηi([X,Y ]) = −2Φ(X,Y ) and this shows that
(16) holds for X,Y ∈ D. Using iii) in the above lemma, we also get dηi(ξk , X) =
0 = Φ(ξk, X) for X ∈ D and since [ξk , ξj ] = 0 (see the proof of iv) in the same
lemma), we also have dηi(ξk, ξj) = 0 = Φ(ξk, ξj). These facts imply (16), that is
M is an almost S-manifold. To conclude the proof of the theorem, we make the
following

Claim: Let ∇̃ be a linear connection satisfying conditions 1) and 2) in Theorem

2.2; then ∇̃ is given by formula (14).



TANAKA–WEBSTER CONNECTION OF ALMOST S-MANIFOLDS 53

Clearly, this implies the uniqueness assertion about ∇̃. Moreover, since M is an
almost S-manifold, using (15) again, we get Q = 0, that is M is CR–integrable.

To prove the claim, set ∇′ := ∇̃−H ; then ∇′ is a linear connection. We just have
to verify that ∇′ is metric and without torsion. Since ∇̃ is metric, we obtain

Xg(Y, Z) = g(∇′
XY, Z) + g(Y,∇′

XZ) + g(H(Z,X), Y ) + g(Y,H(X,Z))

for all X,Y, Z ∈ X (M), and in force of (9) this implies that ∇′ is metric. Clearly,
the condition that ∇′ be torsionless is equivalent to

T̃ (X,Y ) = H(X,Y ) −H(Y,X) ;

taking into account (10), the validity of this equation is an immediate consequence
of the formulas

T̃ (X,Y ) = 2Φ(X,Y )ξ̄ , T̃ (ξi, Z) = −ϕhi(Z) , X, Y ∈ D, Z ∈ X (M)

which hold by assumption on ∇̃ and by virtue of Lemma 2.4. This completes the
proof of Theorem 2.2.

Corollary 2.5. Let M be a CR-integrable almost S-manifold with Tanaka–Webs-

ter connection ∇̃. Then M is normal, i.e. the tensor N = [ϕ, ϕ] + 2dηi ⊗ ξi
vanishes, if and only if

T̃ (ξi, X) = 0, for all X ∈ D, i ∈ {1, . . . , s} .

We end this section with a remark on the relationship between Theorem 2.2
and a result of R. Mizner [8]. Let M be an almost S-manifold with structure
(ϕ, ξi, η

i, g). Denote by TMC the complexified tangent bundle of M , and let H
be the complex version of the almost CR structure (D, J), namely the distribution
H ⊂ TMC defined by

Hp = {Z ∈ DC

p | JZ = iZ} = {X − iJX | X ∈ Dp} .

It is easily verified that the almost CR structure under consideration is partially
integrable, namely [H,H] ⊂ H ⊕ H̄. Moreover the 1-forms {η1, . . . , ηs} make up
an annhilating frame, i.e. a globally defined frame for the annihilator D0M of D.
In the terminology of Mizner ([8], p. 1341), such a frame is nondegenerate of type
{1, . . . , s}. This means that at each point p ∈ M , and for each j ∈ {1, . . . , s},
ηj ◦ Lp is a nondegenerate hermitian form on Hp, where

Lp : Hp ×Hp → TpM
C/HC

p

is the Levi form (cf. e.g. [8], p. 1340). We recall that Lp is defined by

Lp(Zp,Wp) = iπ[Z, W̄ ]p , Zp,Wp ∈ Hp

where Z and W are arbitrary extensions of the tangent vectors Zp,Wp to sections
of H. In the present situation, if Z ∈ Hp, Z = X − iJX , with X ∈ Dp, we have

(ηj ◦ Lp)(Zp) = iηj([Z, Z̄]p) = −2i dηj(Z, Z̄)

= −2iΦ(Z, Z̄) = −2ig(Z, JZ̄)

= −2g(Z, Z̄) = −4g(X,X)



54 A. LOTTA, A. M. PASTORE

so that ηj ◦Lp is negative definite. The main result in [8] states that a globally de-
fined nondegenerate annhilating frame for a partially integrable almost CR struc-
ture canonically determines an affine connection ∇′. This connection is uniquely
determined by the following requirements. Consider the decomposition of TMC

TMC = E1 ⊕E2 ⊕E3 ⊕ · · · ⊕Es+2

where E1 := H, E2 := H̄, and for each i ∈ {1, . . . , s}, Ei+2 is the complex line
bundle spanned by ξi. Then E = {E1, . . . , Es+2} is an almost product structure,
whose torsion is the skew-symmetric bilinear map τ : TMC × TMC → TMC

defined as follows:

τ :=
1

2

s+2
∑

i=1

πi[πi, πi] ,

where πi : TMC → Ei denotes the natural projection, and [πi, πi] is the Nijenhuis
torsion of πi. It is known that for all i, j ∈ {1, . . . , s+2} and for all Zi ∈ ΓEi, Zj ∈
ΓEj :

τ(Zi, Zj) =
∑

k 6=i,j

[Zi, Zj ]k

where [Zi, Zj ]k = πk [Zi, Zj ]. Then Mizner’s connection ∇′ is the unique affine
connection on M whose C-linear extension to TMC satifies the following condi-
tions:

1. ∇′ is a parallelizing connection for E ;

2. T ′
ij = −τij for all distinct i, j ∈ {1, . . . , s+ 2};

3. ∇′
ξi
ξi = 0 for all i ∈ {1, . . . , s}

4. ∇′
Xτ123 = 0 for any X ∈ ΓH.

Here T ′ is the torsion of ∇′, and we have adopted the following convention: for
a map F : TMC × TMC → TMC , and for all i, j, k ∈ {1, . . . , s+ 2},

Fij : Ei ×Ej → TMC , Fijk : Ei ×Ej → Ek

denote the maps obtained from F in the obvious way.

Theorem 2.6. Let M be an almost S-manifold with structure (ϕ, ξi, η
i, g), and

let ∇′ be its Mizner’s connection according to the above discussion. Then the

following conditions are equivalent:

(a) M is CR-integrable;

(b) T ′(Z,W ) = 0 for all Z,W ∈ ΓH.

When (a) or (b) holds, ∇′ coincides with the Tanaka–Webster connection ∇̃ of

M according to Theorem 2.2.
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Proof. To prove (b)⇒(a), it suffices to use the following relation which holds as
a consequence of the conditions defining ∇′ (for a proof see [8], p. 1353):

T ′
iij = −τiij for all distinct i, j ∈ {1, . . . , s+ 2} .

Assuming (b), applying this relation for i = 1 we get τ11j(Z,W ) = 0, for all
sections Z,W of H, which means [Z,W ]j = 0 for all j ≥ 2. This proves that
[H,H] ⊂ H, i.e. M is CR-integrable.

In order to prove that (a)⇒(b), it suffices to show that if M is CR-integrable,

then the Tanaka–Webster connection ∇̃ coincides with ∇′. After this, (b) follows
from

T̃ (X,Y ) = 2Φ(X,Y )ξ̄ , X, Y ∈ ΓD .(17)

Indeed, if X,Y ∈ ΓD, then

T̃ (X − iJX, Y − iJY )

= 2{Φ(X,Y ) − iΦ(X,ϕY ) − iΦ(ϕX, Y ) − Φ(ϕX,ϕY )}ξ̄ = 0

and this yields T̃ (Z,W ) = 0 for all Z,W ∈ ΓH. Hence we verify that ∇̃ = ∇′

showing that ∇̃ satisfies the above conditions 1.− 4. It is clear that, since ϕ and
the ξi are all ∇̃-parallel, then ∇̃ parallelizes E , and morever ∇̃ satisfies condition 3.
To prove 2, we consider first the case where i = 1 and j = 2. Let Z = X−iJX and
W̄ = Y + iJY be arbitrary sections of H and H̄ respectively, where X,Y ∈ ΓD.
Then, using (13):

T̃12(Z, W̄ ) = 2{Φ(X,Y ) + iΦ(X,ϕY ) − iΦ(ϕX, Y ) + Φ(ϕX,ϕY )}ξ̄

= 4{Φ(X,Y ) − iΦ(ϕX, Y )}ξ̄ .

On the other hand,

τ12(Z, W̄ ) =
∑

k 6=1,2

[Z, W̄ ]k =

s
∑

t=1

ηt([X,Y ])ξt

+ i

s
∑

t=1

ηt([X,ϕY ])ξt − i

s
∑

t=1

ηt([ϕX, Y ])ξt +

s
∑

t=1

ηt([ϕX,ϕY ])ξt

= −2Φ(X,Y )ξ̄ − 2iΦ(X,ϕY )ξ̄ + 2iΦ(ϕX, Y )ξ̄ − 2Φ(ϕX,ϕY )ξ̄

and this implies T̃12 = −τ12. Next we treat the case where i = 1 and j > 2. Using
(16), setting t = j − 2, we have

T̃1j(Z, ξt) = T̃1j(X, ξt) − iT̃1j(ϕX, ξt)

=
1

2
{ϕ[ξt, ϕX ] + [ξt, X ]} −

i

2
{−ϕ[ξt, X ] + [ξt, ϕX ]}

=
1

2
{[ξt, X ] + iϕ[ξt, X ]} −

i

2
{[ξt, ϕX ] + iϕ[ξt, ϕX ]}

= [ξt, X ]2 − i[ξt, ϕX ]2 = [ξt, Z]2 .

Now, since [ξt,D] ⊂ D, we have [Z, ξt] ∈ Γ(H⊕ H̄), hence

τ1j(Z, ξt) = [Z, ξt]2
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so that T̃1j = −τ1j . The verification of 2. when i = 2 and j > 2 is similar. For
the case when i, j ≥ 3, observe that both sides of 2. vanish. This completes the
verification of 2. As to property 4, it is a consequence of ∇̃g = 0 and ∇̃ξ1 = 0,
since

τ123(Z, W̄ ) = [Z, W̄ ]3 = η1([Z, W̄ ])ξ1

= −2Φ(Z, W̄ )ξ1 = 2ig(Z, W̄ )ξ1 .

We conclude that ∇̃ = ∇′ and this completes the proof.

We remark that our approach in the determination of the Tanaka–Webster
connection of an almost S-manifold provides an explicit formula for ∇̃ involving
the Levi-Civita connection of the metric g (cf. (14)).

3. CR-integrable almost S-structures as Cartan geometries

As an application of Theorem 2.2, in this section we give a canonical interpreta-
tion of the notion of CR–integrable almost S-structure on a manifold as a Cartan
geometry with an appropriate reductive model Klein geometry. About this notion,
we shall follow the terminology and notations in R. Sharpe’s book [9], Chap. 5.

Consider the real vector space

V := R2k ⊕ Rs = D ⊕ D⊥

where k ≥ 1, s ≥ 1. We denote by {x1, . . . , x2k, e1, . . . , es} the standard basis and
by go the standard inner product on V . Moreover, let J : D → D be the complex
structure associated to the matrix

(

0 −Ik
Ik 0

)

with respect to the basis {x1, . . . , x2k} of D. Let f : V → V be the endomorphism
defined by

f(Z) =

{

JZ if Z ∈ D

0 if Z ∈ D⊥
.

We also set e :=
∑s

i=1 ei ∈ D⊥ and we denote by Φo the 2-form on V such that

Φo(x, y) := go(x, fy)

for all x, y ∈ V .

Now let M be a smooth manifold of dimension n = 2k+ s; we denote by L(M)
the bundle of frames of M ; we think of L(M) as the GL(V )-principal fibre bundle
over M consisting of all linear isomorphisms u : V → TxM , x ∈M . The following
proposition is standard:

Proposition 3.1. There is a natural bijective correspondence between metric f ·pk
structures ζ = (ϕ, ξi, η

i, g) of rank 2k and U(k) × Is-reductions Qζ of the bundle

L(M). A frame u ∈ Lx(M) belongs to Qζ if and only if

ϕx ◦ u = u ◦ f , u∗(gx) = go , u(ei) = ξi(x) .
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Moreover, a linear connection on M , with covariant differentiation ∇, is reducible

to Qζ if and only if

∇ϕ = ∇g = ∇ξi = 0 .

Next we introduce a Lie algebra structure on the vector space

g = u(k) ⊕ V(18)

as follows. We set

[x, y] := −2Φo(x, y)e, [A, x] := A · x =: −[x,A], [A,B] := AB −BA

for all x, y ∈ V and A,B ∈ u(k); here A · x denotes the natural action of u(k) on
V . We remark that the validity of the Jacobi identity for [ , ] is based on the fact
that each A ∈ u(k) acts as a skew-symmetric endomorphism of V with respect to
go, commuting with f .

The adjoint representation of U(k) × Is on its Lie algebra u(k) extends to a
representation, still denoted by Ad : U(k) × Is → Aut(g) such that

Ad(h)(x) = h · x , Ad(h)(A) = hAh−1 for all x ∈ V, A ∈ u(k) .

Hence the Klein pair (g, u(k)) is a model geometry with group H = U(k) × Is ⊂
GL(V ) according to R. Sharpe’s definition in [9], page 174. Notice that the repre-
sentation Ad and the induced representation AdV of H on V are faithful, so that
the model is effective and of first–order . Moreover, the decomposition g = u(k)⊕V
is a reductive one, namely V is an Ad(H)-submodule of g. This property implies the
following characterization of Cartan connections with model (g, u(k)) and group
H (see e.g. [1] or [9], Appendix A):

Proposition 3.2. Up to gauge equivalence, every Cartan geometry on M modeled

on (g, u(k)) with group H is given by (Q,ω) where Q is an H-reduction of the

bundle L(M), and ω = γ+ θ, where γ : TQ→ u(k) is a principal connection form

on Q, while θ : TQ→ V is the canonical form given by

θu(Y ) = u−1(π∗Y ), π : Q→M natural projection

for each frame u ∈ Q and Y ∈ TuQ.

We recall that two Cartan geometries (P, ω) and (Q,ω′) on a manifold M ,
having the same Klein model, are called gauge equivalent it there is a bundle
isomorphism Ψ : P → Q covering the identity iM , such that Ψ∗ω′ = ω.

In order to get a canonical interpretation of CR-integrable almost S-structures
as Cartan geometries, we need to restrain our attention to a special class of the
latter, which we shall call normal Cartan geometries. Their characterization is
done by means of the corresponding curvature function. We recall that the cur-

vature form Ω of a Cartan geometry (P, ω) modeled on (g, u(k)) is the g-valued
2-form on P , such that

Ω(X,Y ) = dω(X,Y ) +
1

2
[ω(X), ω(Y )] .
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Denote by C2(V, g) the real vector space of alternating bilinear maps ψ : V ×V → g.
This is an H–module under the left action

h · ψ(·, ·) := Ad(h)ψ
(

AdV (h−1)·, AdV (h−1) ·
)

.

The curvature function of (P, ω) is the smooth map K : P → C2(V, g) defined by

K(u)(X,Y ) := Ωu(ω−1X,ω−1Y ) .

A Cartan geometry is called torsion free if KV = 0, where KV (u) = prV ◦K(u).
Now consider the subspace M of C2(V, g) consisting of the bilinear maps
ψ : V × V → g such that

ψV (x, y) = ψV (ei, ej) = 0 , ψV (ei, fx) = −fψV (ei, x)

for all x, y ∈ D.

Remark 3.3. M is an H–submodule of C2(V, g).

This is an immediate consequence of the fact that the decomposition V =
Ck ⊕Rs is H-invariant and that H acts by complex linear maps on Ck.

According to this remark, we define an M-normal Cartan geometry on M ,
modeled on (g, u(k)) with group H , to be one which is of curvature type M, i.e.
K(P ) ⊂ M. This is in accordance with the general prescription in [9], page 201.
Notice that normality is preserved under gauge equivalence.

Now we can state the main result of this section.

Theorem 3.4. Let M be a real manifold of dimension 2k+ s. There is a natural

bijection between the set of CR–integrable almost S–structures of rank 2k on M
and the set of M-normal Cartan geometries on M modeled on (g, u(k)), with group

H = U(k) × Is, modulo gauge equivalence. Moreover, the S-structures correspond

to the torsion free Cartan geometries.

Before starting the proof, we make the following remark:

Lemma 3.5. Maintaining the notation in Proposition 3.2, let Q be an H-reduc-

tion of L(M), and let ω = γ + θ be a Cartan geometry on M modeled on (g, u(k))

with group H. We denote by ∇̃ the linear connection induced by the principal

connection γ. Let K denote the curvature function of ω, and let T̃ denote the

torsion tensor of ∇̃. Then for each frame u ∈ Qx , we have the following formula:

2uKV (u)(X,Y ) = T̃ (uX, uY ) + u[X,Y ] , for all X,Y ∈ V .(19)

Proof. This is a standard computation, cf. [9] or [5].

Proof of Theorem 3.4. Fix a CR-integrable almost S-structure ζ = (ϕ, ξi, η
i, g);

according to Proposition 3.1, ζ gives rises canonically to a reduction Qζ of L(M) to

the groupH . Moreover onM we have the Tanaka–Webster connection ∇̃ according
to Theorem 2.2. Since the tensor fields ϕ, g, ξi are all parallel with respect to ∇̃,
this connection reduces to a principal connection γ on Qζ . Let θ be the canonical
form of Qζ and set ωζ = γ + θ. Then (Qζ , ωζ) is a Cartan geometry modeled on
(g, u(k)) with group H (Proposition 3.2). Using formula (19) we see that (Qζ , ωζ)
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is a normal geometry. Indeed, for all X,Y ∈ D we have [X,Y ] = −2Φo(X,Y )e; if
u ∈ Qζ(x), x ∈M , it follows

u[X,Y ] = −2Φ(x)(uX, uY )ξ̄x ,

and on the other hand, taking into account property (6) of ∇̃, since uX, uY ∈ D(x),
we have

T̃ (uX, uY ) = 2Φ(x)(uX, uY )ξ̄x .

It follows from (19) that uKV (u)(X,Y ) = 0, that is KV (u)(X,Y ) = 0. Since
[ei, ej ] = 0, in the same way we can verify that KV (D⊥,D⊥) = 0. Finally, using

property (7) of ∇̃, we get

2uKV (u)(ei, fX) = T̃ (ξi(x), ϕ(uX)) = −ϕxT̃ (ξi(x), uX)

= −2ϕxuKV (u)(ei, X) = −2ufKV (u)(ei, X)

whence KV (u)(ei, fX) = −fKV (u)(ei, X).
Hence to each CR-integrable almost S-structure ζ we have associated a normal

Cartan geometry Cζ = (Qζ , ωζ) modeled on (g, u(k)) with group H . Clearly, the
map ζ 7→ Cζ is injective. Notice that, according to corollary 2.5, ζ is normal, i.e.

it is an S-structure, if and only if T̃ (ξi, Z) = 0 for all Z ∈ D. Using again (19), we
easily see that this is equivalent to KV (u)(ei, X) = 0 for all u ∈ Qζ and X ∈ D.
By definition of M, this is equivalent to KV = 0, that is to Cζ being torsion free.

To conclude the proof of the theorem, it suffices to verify that, up to gauge
equivalence, every normal Cartan geometry (P, ω) with model (g, u(k)) and group
H is given by Cζ for some CR-integrable almost S-structure on M . We know
from Proposition 3.2 that (P, ω) is gauge equivalent to C = (Q,ω′) where Q is
a reduction of L(M) to H , and ω′ = γ + θ, where γ is a principal connection
form on Q. There exists a unique metric f ·pk structure ζ = (ϕ, ξi, η

i, g) on

M such that Q = Qζ . To γ there corresponds a linear connection ∇̃; clearly,

∇̃ϕ = ∇̃g = ∇̃ξi = 0. Moreover, using the M-normality of (Q,ω′), we see as above

that the torsion T̃ of ∇̃ satisfies the conditions (6)–(8) in Theorem 2.2. Hence ζ is

actually a CR-integrable almost S-structure and ∇̃ is the corresponding Tanaka–
Webster connection. In particular, it follows that Cζ = C and this concludes the
proof of the theorem.

Examples. We end by discussing examples of homogeneous non normal almost
S-manifold whose Tanaka–Webster curvature vanishes. Notice that, for the case
s = 1, a manifold with this properties does not exist. Namely, it can be easily
verified by using the Bianchi identity that a contact metric manifold with vanishing
Tanaka–Webster curvature is necessarily Sasakian.

Set

m = R2k ⊕Rs = V1 ⊕ V2, s ≥ 2

and denote by {X1, . . . , Xk, JX1, . . . , JXk} the standard basis of R2k endowed

with the complex structure J associated with the matrix

(

0 −Ik
Ik 0

)

. Moreover

let {ξ1, . . . , ξs} denote the natural basis of V2 and let g be the inner product on m
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obtained by declaring the basis {Xi, JXi, ξj} to be orthonormal. Let ϕ : m → m

be the natural f -structure on m, i.e. ϕ is the endomorphism which coincides with
J on V1 and vanishes on V2.

We also denote by U the endomorphism of m which is associated to the matrix




Ik 0 0
0 −Ik 0
0 0 0



 .

Notice that Uϕ = −ϕU .
We denote by h the Lie subalgebra of End(m) consisting of all endomorphisms

which vanish on V2 and annihilate the tensors ϕ, g and U when extended to the
tensor algebra of m as derivations. We remark that

A ∈ so(k) 7→





A 0 0
0 A 0
0 0 0





provides a Lie-algebra isomorphism so(k) ∼= h. In particular, h is compact semisim-
ple provided k ≥ 3.

Now we define a Lie algebra structure on g := h ⊕ m as follows:

[X,Y ] := −2g(X, JY )e, [v,X ] := a(v)UX = −[X, v]

[A,X ] = A ·X = −[X,A], [A, v] := 0, [v, w] := 0, [A,B] := AB −BA

for each X,Y ∈ V1, v, w ∈ V2, A ∈ h. Here e :=
∑

i ξi ∈ V2, and a : V2 → R is a
fixed non null linear functional such that a(e) = 0.

Let G be the connected and simply connected Lie group with Lie algebra g and
let H denote the analytic subgroup corresponding to the subalgebra h. Assuming
k ≥ 3, we have that H is compact, so that M = G/H is a reductive homogeneous
space. The tensors ϕ and g on the reductive summand m are Ad(H)-invariant,
and Ad(h)ξi = ξi, for each h ∈ H . Then (ϕ, ξi, η

i, g), where the ηi are the dual
forms of the ξi, canonically determine a G-invariant metric f ·pk structure on M .
The canonical G-invariant linear connection ∇̃ satisfies the conditions 1), 2) in
Theorem 2.2. Indeed, since the structure is G-invariant, the tensor fields ϕ, ηi

and g are all parallel with respect to ∇̃. Moreover at the point o = H , under
the natural identification ToM ∼= m, we have the formula T̃o(Z,W ) = −[Z,W ] for

the torsion of ∇̃, which implies that ∇̃ satisfies properties (6)–(8), according to
the definition of the Lie bracket m × m → m; in particular notice that (7) holds
since [v, JX ] = a(v)UJX = −J [v,X ], for each v ∈ V2 and X ∈ V1. Hence M is a
homogeneous almost S-manifold, which is not normal according to Corollary 2.5.
Finally, ∇̃ has vanishing Tanaka–Webster curvature because [m,m] ⊂ m.
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