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Description of algebraically constructible functions
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Abstract. The algebraically constructible functions on a real algebraic set are the sums of signs
of polynomials on this set. We prove a formula giving the minimal number of polynomials
needed to write generically a given algebraically constructible function as a sum of signs. We
also prove a characterization of the polynomials appearing in a generic presentation of the
function with the minimal number of polynomials. Both results are e¤ective.

Introduction

Let V HRN be a real algebraic set. (All the algebraic sets we consider here are zero
sets of polynomials in some RN .) We will denote by PðVÞ and RðVÞ respectively the
ring of polynomials on V and the ring of regular functions on V . If V is irreducible,
let KðVÞ be the field of rational functions on V . Algebraically constructible functions

on V have been defined by McCrory and Parusiński in [9], as linear combinations,
with integer coe‰cients, of Euler characteristics of fibres of proper regular mor-
phisms. These authors use them to study the topology of real algebraic sets: in [9]
they reformulate the Akbulut–King conditions of algebraicity in dimensionc 3, and
in [10] they give new necessary conditions for dimension 4.

If P is a polynomial function on V (or, more generally, a regular function or a
Nash function), we define the sign of P as the function ðsgnPÞ : V ! Z such that for
all x A V

ðsgnPÞðxÞ ¼
1 if PðxÞ > 0;

�1 if PðxÞ < 0;

0 if PðxÞ ¼ 0:

8><>:
Parusiński and Szafraniec on one hand ([12]), and Coste and Kurdyka on the other
([8]), have proved independently that the algebraically constructible functions on V

are exactly the sums of signs of polynomials on V .
Let j : V ! Z be an algebraically constructible function. There are clearly many

ways to write j as a sum of signs of polynomials on V . For instance, for any



P A PðVÞ, we have j ¼ jþ sgnPþ sgnð�PÞ, so we can get a presentation as long
as we want. We are interested here in a presentation as short as possible.

We will work generically, i.e. outside an algebraic subset of V of dimension strictly
smaller than the dimension of V . We will write ¼gen for an equality holding generi-
cally on V .

We prove a formula giving the minimal number of polynomials (counted ‘‘with
multiplicities’’) needed to write generically an algebraically constructible function as
a sum of signs of polynomials. This formula allows us to calculate e¤ectively this
minimal number, using an induction on the dimension of the space. The proof is a
transposition to the geometric case of a result for quadratic forms over spaces of
orderings: the isotropy theorem. There is a similar formula for Nash constructible
functions.

Then, using the same type of proofs, we give results about the polynomials appear-
ing in a generic presentation of a given algebraically constructible function with the
minimal number of polynomials. Such polynomials are said to be represented by the
function.

The paper is organized as follows: Section 1 is devoted to a short presentation of
spaces of orderings, Section 2 contains the formula for the minimal number of poly-
nomials, and Section 3 gives a characterization of the represented polynomials.

I wish to thank G. Stengle for rereading this paper, and C. Scheiderer for his helpful
suggestions.

1 Spaces of orderings

1.1 Presentation. We present spaces of orderings in the context of the real spectrum
of a field. For a complete definition we refer to [3] or [11]. Here Z=2Z ¼ f�1; 1g, and
we denote by FðX ;Z=2ZÞ the set of functions from a set X to Z=2Z.

Let K be a real field. The set of the orderings of K (as a field) is called the real

spectrum of K and denoted Specr K . If a is a non-zero element of K , we define the
function ðsgn aÞ: Specr K ! Z=2Z which maps an ordering s to the sign of a for s.
Denote

G ¼ fsgn a j a A K � f0ggHFðSpecr K ;Z=2ZÞ:

Then ðSpecr K ;GÞ is a space of orderings.
A subset C of Specr K is said to be constructible if it is a finite union of sets of the

form

fs A Specr K j ðsgn a1ÞðsÞ ¼ 1; . . . ; ðsgn arÞðsÞ ¼ 1g

with a1; . . . ; ar A K . We consider the constructible topology on Specr K , that is, the
topology on Specr K for which the constructible subsets of Specr K form a basis.

Consider now a (non-empty) closed subset F of Specr K . The set F is a fan of
K if
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Es1; s2; s3 A F bs A F Eg A G : gðsÞ ¼ gðs1Þgðs2Þgðs3Þ

i.e. ‘‘the product of three elements of F is still in Specr K and belongs to F ’’, where
the product of orderings means the product of signs for these orderings.

Remark 1.1. Any subset of Specr K of one or two elements is a fan, and is called a
trivial fan. The cardinality of a finite fan is always a power of two, since a fan has a
structure of a ðZ=2ZÞ-a‰ne space, with the product as inner operation, and the nat-
ural scalar multiplication.

Let X be a (non-empty) closed subset of Specr K. Then the set X is a subspace

of Specr K if there is no fan F of K such that X VF has exactly three elements. If
H ¼ fðsgn aÞjX j a A Knf0gg, then the couple ðX ;HÞ is a space of orderings.

Example 1.2. Let X be a set with a single element, and let H be the set of the two
constant functions X ! f1g and X ! f�1g. Then ðX ;HÞ is a space of orderings,
called the atomic space and denoted by E.

If s is an ordering of K and B is a valuation ring of K , we say that s and B are
compatible if for any a in K and any b in the maximal ideal m of B, the relation
0 < a < b for s implies a A m. Then s induces an ordering s on the residue field k of
B by

ðsgn aÞðsÞ ¼ ðsgn aÞðsÞ for a A Bnm

where a denotes the class of a in k. Conversely, if s A Specr k, the orderings of K
compatible with B and inducing s are called pullbacks of s via B. If X is a subspace of
Specr k (respectively a fan of k), then the set of the pullbacks of the elements of X via
B is a subspace of Specr K (respectively a fan of K).

Example 1.3. We will use the following construction (see [4, Ex. 2.2]). Let A be
a regular local ring of dimension d with quotient field K , and let ðx1; . . . ; xdÞ be
a regular system of parameters of A. Consider the valuation ring B of the place
K ¼ K0 ! K1 Uy ! � � � ! Kd Uy, where Ki is the quotient field of the ring
Ai ¼ A=ðx1; . . . ; xiÞ and the place Ki ! Kiþ1 Uy corresponds to the valuation ring
Aiðxiþ1Þ of Ki. The ring B is a discrete valuation ring of rank d. It dominates A and
has the same residue field k. Any ordering s of k has exactly 2d pullbacks s in K via
B, and each of them is determined by the signs given to x1; . . . ; xd .

We come now to the notion of form over a space of orderings.

Definition 1.4. Let ðX ;GÞ be a space of orderings. A form of dimension r over X is a
class of r-tuples of elements of G modulo the relation

ð f1; . . . ; frÞ � ðg1; . . . ; grÞ i¤ Es A X : f1ðsÞ þ � � � þ frðsÞ ¼ g1ðsÞ þ � � � þ grðsÞ:
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We denote by h f1; . . . ; fri the class of ð f1; . . . ; frÞ A Gr. If X 0 is a subspace of X , the
restriction of the form r ¼ h f1; . . . ; fri to X 0 is the form rjX 0 ¼ h f1jX 0 ; . . . ; frjX 0i
over X 0.

Example 1.5. If K is an ordered field, a quadratic form (in the usual sense) of dimen-
sion r over K is a symmetric matrix of dimension r with entries in K . We can diago-
nalize this matrix, and the diagonal matrix we get corresponds to the previous defi-
nition for the real spectrum of K . The usual definition of signature of a quadratic
form coincides with the following one.

Definition 1.6. The signature of the form r ¼ h f1; . . . ; fri over the space of orderings
X is the function r̂r : X ! Z defined by r̂rðsÞ ¼ f1ðsÞ þ � � � þ frðsÞ.

A form over X is anisotropic if there is no form over X with the same signature
and a strictly smaller dimension. A form which is not anisotropic is said to be iso-

tropic.

If r ¼ h f1; . . . ; fri and r 0 ¼ hg1; . . . ; gsi are two forms over X and h is an element
of G, we define rþ r 0 ¼ h f1; . . . ; fr; g1; . . . ; gsi and hr ¼ hhf1; . . . ; hfri. Then we havedrþ r 0rþ r 0 ¼ r̂rþ r̂r 0 and chrhr ¼ hr̂r.

1.2 Structure. We present now two basic operations on spaces of orderings: addi-
tion and extension.

Let ðX1;G1Þ and ðX2;G2Þ be two spaces of orderings. The sum ðY ;HÞ ¼ ðX1;G1Þþ
ðX2;G2Þ is defined by Y ¼ X1 t X2 (disjoint union) and ðg1; g2Þ A H ¼ G1 � G2 act-
ing as

ðg1; g2ÞðsÞ ¼
g1ðsÞ if s A X1;

g2ðsÞ if s A X2:

�

The resulting space is a space of orderings.
If now ðY ;HÞ is a space of orderings and H 0 is a group of exponent two, the

extension ðY ;HÞ½H 0� is the couple ðcH 0H 0 � Y ;H 0 �HÞ, where cH 0H 0 denotes the group
of homomorphisms from H 0 to Z=2Z and the functions are defined by

ðh 0; hÞða; sÞ ¼ aðh 0ÞhðsÞ for ða; sÞ A cH 0H 0 � Y and ðh 0; hÞ A H 0 �H:

This defines a space of orderings.

Example 1.7. If B is a discrete valuation ring of rank d of a field K, and if Y is a
subspace of the real spectrum of its residue field, then the set of pullbacks of the ele-
ments of Y via B is the extension Y ½ðZ=2ZÞd �.

These two operations are very important, as the following theorem shows ([3,
IV.5.1], [11, 4.2.2]).
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Theorem 1.8 (Structure theorem). Any finite space of orderings can be built from a

finite number of atomic spaces, by a finite number of additions and extensions by Z=2Z.
This construction is unique up to isomorphism.

We now explain the behaviour of forms under addition and extension of spaces of
orderings. Let X1;X2 be spaces of orderings. It follows from the definition of the sum
that a form r of dimension r over X1 þ X2 can be seen as a couple ðr1; r2Þ where rl
is a form of dimension r over Xl for l ¼ 1; 2. The form r is anisotropic over X1 þ X2

if and only if r1 is anisotropic over X1 or r2 is anisotropic over X2.
If now Y is a space of orderings and H 0 a group of exponent two, an anisotropic

form r over Y ½H 0� can be written in a unique way as r ¼
P

h 0 AH 0 h 0rh 0 , where the
rh 0 ’s are anisotropic forms over Y , and only a finite number of rh 0 ’s are di¤erent from
the ‘‘empty’’ form h i.

1.3 Application to algebraically constructible functions. Let V HRN be an irreduc-
ible real algebraic set, and let j be an algebraically constructible function on V . Then j

is in particular constructible, i.e. there exists a finite semi-algebraic partition of V
such that j is constant on each element of the partition.

Denote SV ¼ Specr KðVÞ. As in [7], we identify the algebraically constructible
function j ¼

Pr
j¼1 sgnPj considered generically on V , with the signature ~jj of the

form h f1; . . . ; fri over SV , where fj ¼ sgnPj on SV .
Assume j takes the value k A Z on a semi-algebraic subset S of V . Consider the

constructible subset ~SS of SV defined by the same boolean combination of equations
and sign conditions as S. The set ~SS is well-defined (see [5]). Then, the function ~jj takes
the value k on ~SS.

The minimal number of polynomials needed to describe j generically is the dimen-
sion of the anisotropic form over SV with signature ~jj. In the same way, a polynomial
P appears in a generic presentation of j with the minimal number of polynomials if
and only if the sign of P is an entry of the anisotropic form over SV with signature ~jj.
So instead of studying the geometric situation, we will study forms in the algebraic
context of spaces of orderings.

2 Number of polynomials

Let V HRN be a real algebraic set, and let j : V ! Z be an algebraically construc-
tible function. We want to calculate the minimal number NðjÞ of polynomials needed
to write j generically as a sum of signs of polynomials, i.e.

NðjÞ ¼ min r A N j bP1; . . . ;Pr A PðVÞ : j ¼gen

Xr

j¼1

sgnPj on V

( )
:

This means that if the same polynomial appears several times in the presentation, we
will count it at each appearance. So we count the minimal number of polynomials
‘‘with multiplicities’’.
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We will denote byMðjÞ the maximal generic value of the absolute value of j. Since
each polynomial in the presentation contributes the value 1 or �1, we have

NðjÞdMðjÞ:

If V1; . . . ;Vr are the irreducible components of V , then we have

NðjÞ ¼ maxfNðjjV1
Þ; . . . ;NðjjVr

Þg:

Example 2.1. If dimV ¼ 1, we have NðjÞ ¼ MðjÞ for any algebraically constructible
function j. Indeed, by the previous remark, we may assume that V is irreducible. We
can write generically j as the sum of MðjÞ constructible functions, each of them tak-
ing generically the values 1 and �1. The space SV is a so-called SAP-space, since its
stability index is sðSV Þ ¼ dimV ¼ 1 (cf. [3, III.3.4], [11, 3.3]). Using [3, III.3.2] or [11,
3.3.1], we get that any constructible function on V with generic values in f1;�1g is
generically the sign of a polynomial.

If dimV d 2, this equality no longer holds for a general algebraically constructible
function. For instance, consider j : R2 ! Z defined by

jðx; yÞ ¼ 2 if xd 0 and yd 0;

�2 else.

�
Then MðjÞ ¼ 2 and NðjÞ is even. We have j ¼gen sgn xþ sgn yþ sgnðxyÞ � 1, so
NðjÞc 4. If j was generically the sum of the signs of two polynomials, these poly-
nomials should be generically positive on the first quadrant and generically negative
outside. Such polynomials do not exist, so NðjÞ ¼ 4 > MðjÞ.

To make the presentation clear we start by introducing the algebraic tools we use
to estimate NðjÞ. Then we will present the formula, and prove it. Finally we will
extend it to the Nash case.

2.1 Algebraic tools. From now on we denote Z=2Z ¼ f1; ag and dZ=2ZZ=2Z ¼ f1; ag,
that is, a is the identity.

Lemma 2.2. Let X be a space of orderings, and let j : X ! Z be the signature of a

form over X. We denote by NðX ; jÞ the dimension of the anisotropic form over X with

signature j.
If X is a sum X ¼ X1 þ X2, then

NðX ; jÞ ¼ maxfNðX1; jjX1
Þ;NðX2; jjX2

Þg:

If X is an extension X ¼ Y ½Z=2Z�, we define two functions c 0;c 00 on Y by c 0ðsÞ ¼
1
2
ðjð1; sÞ þ jða; sÞÞ and c 00ðsÞ ¼ 1

2
ðjð1; sÞ � jða; sÞÞ. Then c 0 and c 00 are signatures

of forms over Y and

NðX ; jÞ ¼ NðY ;c 0Þ þNðY ;c 00Þ:
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Proof. Let r be the anisotropic form over X such that r̂r ¼ j.
Assume first X ¼ X1 þ X2. Write r ¼ ðr1; r2Þ where rl is a form over Xl for l ¼ 1; 2.

Then NðX ; jÞ ¼ dim r ¼ dim r1 ¼ dim r2, and either r1 or r2 is anisotropic. As rl
represents jjXl

, we have NðXl ; jjXl
ÞcNðX ; jÞ, with equality if rl is anisotropic. This

proves the first point of the lemma.
Assume now that X is the extension X ¼ Y ½Z=2Z�. We can write r ¼ r1 þ ara

where r1 and ra are anisotropic forms over Y . Then jð1; sÞ ¼ r̂r1ðsÞ þ r̂raðsÞ and
jða; sÞ ¼ r̂r1ðsÞ � r̂raðsÞ for s A Y , so c 0 ¼ r̂r1 and c 00 ¼ r̂ra. We get

NðX ; jÞ ¼ dim r ¼ dim r1 þ dim ra ¼ NðY ;c 0Þ þNðX ;c 00Þ: r

The formula of the next paragraph is a geometric version of the following result
([3, IV.6.4], [11, 4.3.1]):

Theorem 2.3 (Isotropy theorem). Let X be a space of orderings, and r an anisotropic

form over X. Then there exists a finite subspace Y of X such that rjY is still anisotropic.

2.2 The geometric result. Let V HRN be a real algebraic set, and let j : V ! Z be
an algebraically constructible function. We use the notion of walls of the function j.
This notion has been used by Acquistapace, Andradas, Broglia and Vélez to study
basicness ([2]) and separation ([1]) of semi-algebraic sets, and by the author to char-
acterize algebraically constructible functions ([7]). We recall the definition.

If SHV is a semi-algebraic set, we denote by S � its regularized version

S � ¼ IntðAdhðIntðSÞVRegðVÞÞÞ:

A wall of j is an irreducible component, of codimension one in V , of the Zariski
closure of the Euclidean boundary of a ðj�1ðmÞÞ�.

By the remark at the beginning of the section, we can work independently on each
irreducible component of V . So from now on, we assume that V is irreducible.

If V is a one-point compactification of V , we can extend j to a function j on
V , by giving any value at the additional point. Then j is algebraically constructible
on V , and we have NðjÞ ¼ NðjÞ. So from now on, we also assume that V is com-
pact.

Now, consider p : V 0 ! V , a sequence of blowings-up with smooth centers, such
that V 0 is non-singular, and that the walls in V 0 of the algebraically constructible
function j � p are non-singular with normal crossings intersections. (By this we mean
that there is a family of polynomials P1; . . . ;Ps A PðV 0Þ describing ððj � pÞ�1ðkÞÞ�,
for k A Z, such that all the Pj’s are at normal crossings in V 0.) We have Nðj � pÞ ¼
NðjÞ. So we consider from now on this non-singular situation.

Remark 2.4. Since V is non-singular, j is generically constant on each of the con-
nected components of the complement of the union of the walls.

Indeed, let C be such a connected component. Denote by Y the union of the Eucli-
dean boundaries of the ðj�1ðmÞÞ� for m A Z, and let j� ¼

P
m AZ m1ðj�1ðmÞÞ� . The
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function j� is constant on each connected component of VnY . If x A C, the codi-
mension of the germ Yx in Vx is at least two, so ðVnYÞx is connected and j� is con-
stant on ðVnY Þx. Since j and j� are generically equal on V , the function j is generi-
cally constant on a neighbourhood of x.

Fix now x A C. We define a function f : C ! f0; 1g by f ðyÞ ¼ 1 if the generic value
of j near y is the same as near x, and f ðyÞ ¼ 0 else. Then f is continuous, so it is
constant and equal to 0, and j is generically constant on C.

Let W be a wall of j. We consider the algebraically constructible function qWj on
W defined in [7]. We only recall here the generic definition in our non-singular case.

Let x be a point of W , such that x belongs to no other wall of j. The function j is
generically constant near x on each of the two sides ofW . Then, qWjðxÞ is the average
of the generic values of j on each of these two sides.

We define another function on W . Let t be a polynomial on V which is an uni-
formizer of the regular local ring RðVÞIðW Þ. Then we set

q t
Wj ¼ qW ðj � sgn tÞ:

The function q t
Wj is algebraically constructible on W , and is generically equal to the

half of the di¤erence of the generic values of j on the two sides of W . The definition
of qWj and q t

Wj can be compared to the definition of the shadow and countershadow
of a semi-algebraic set on a wall in [1].

Remark 2.5. If t 0 A PðVÞ is another uniformizer of RðVÞIðWÞ, then the functions

q t
Wj and q t 0

Wj are a priori di¤erent, but Nðq t
WjÞ ¼ Nðq t 0

WjÞ. Indeed, if q t
Wj ¼genPr

j¼1 sgnPj on W , then q t 0

Wj ¼gen

Pr
j¼1 sgnðt � t 0 � PjÞ on W . This allows us to talk

about Nðq t
WjÞ without making precise the chosen uniformizer t.

Theorem 2.6. Let V HRN be an irreducible real algebraic set which is compact and

non-singular. Let j : V ! Z be an algebraically constructible function whose walls are

non-singular with normal crossings intersections. Then

NðjÞ ¼ max
n
MðjÞ; max

W wall of j
ðNðqWjÞ þNðq t

WjÞÞ
o
:

This theorem reduces the problem of calculating NðjÞ to a finite number of similar
problems in lower dimension. By induction on the dimension, it is su‰cient to cal-
culate this number of polynomials in dimension one. By Example 2.1, in dimension
one we have NðjÞ ¼ MðjÞ, and we can calculate NðjÞ in an e¤ective way for any
dimension of V .

Remark 2.7. If the generic values of j are contained in an interval ½d� k; dþ k� with
d A Z and k A N, then the generic values of qWj are in ½d� k; dþ k�, and the generic
values of q t

Wj are in ½�k; k�. AsMðjÞc k þ jdj, we get by induction on the dimension
that
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NðjÞc 2dimV�1k þ jdj:

This bound was already in [7], where its sharpness is proved if k is even. (For odd
values of k, this bound can be improved a bit to get a sharp one, see [7].)

2.3 Proof of Theorem 2.6. We have seen that NðjÞdMðjÞ. Let W be a wall of j,
and let t be an uniformizer of RðVÞIðW Þ which is a polynomial on V . Consider the
space of orderings X ¼ SW ½Z=2Z�. The residue field of RðVÞIðW Þ is KðWÞ, and we
embed X in SV via this ring RðVÞIðW Þ, using t, as in Example 1.7. We have clearly
NðjÞdNðX ; ~jjjX Þ with the notations of Lemma 2.2, and by the second point of this
lemma we get

NðX ; ~jjjX Þ ¼ NðSW ; gqWjqWjÞ þNðSW ; gq t
Wjq t
WjÞ ¼ NðqWjÞ þNðq t

WjÞ:

This proves the inequalityd.
To prove the other inequality, we consider the anisotropic form r over SV such

that r̂r ¼ ~jj. We want to calculate NðjÞ ¼ dim r. By the isotropy Theorem 2.3, there
exists a finite subspace X 0 of SV such that rjX 0 is still anisotropic. We choose X 0 of
minimal cardinality for this property. Then X 0 cannot be a sum X 0

1 þ X 0
2, since then

either rjX 0
1
or rjX 0

2
would be anisotropic, which would contradict the minimality of

the cardinality of X 0. Thus, it follows from the structure Theorem 1.8 that X 0 is the
atomic space or an extension.

If X 0 is the atomic space, X 0 ¼ fsg, then NðjÞ ¼ j~jjðsÞjcMðjÞ.
If X 0 is an extension, we write X 0 ¼ Y 0½ðZ=2ZÞr�, where Y 0 is not an extension.

There is a valuation ring B of KðVÞ such that Y 0 is a subspace of the real spectrum
of the residue field k of B, and such that X 0 is a subspace of the pullback of Y 0 in SV

via B. As V is compact, we have RðVÞHB. Let p be the intersection with RðVÞ of
the maximal ideal of B. It is a prime ideal of RðVÞ. Denote by Z the zero set of p
in V : this is an irreducible algebraic set, and by construction KðZÞ is a subfield of k.
Let Y be the subspace of SZ generated by the restrictions to KðZÞ of the elements of
Y 0. Note that if s A X 0 is a pullback of the element g A Y 0, and t A Y is the restriction
of g, then t is a specialization of s in Specr RðVÞ. Indeed, if f A RðVÞ is such that
(sgn f ÞðtÞ ¼ 1, then ðsgn f ÞðgÞ ¼ 1, and so ðsgn f ÞðsÞ ¼ 1.

We claim that at least one wall of j contains Z. (Note that we do not claim that
two orderings in X 0 have a common specialization on a wall.) For, otherwise, each
element t in Y would be in the constructible subset ~CC of Specr PðVÞ for some con-
nected component C of the complement of the union of the walls. But then, all the
elements of X 0 specializing to t would be in ~CC too. Since j is generically constant on
C by Remark 2.4, the value of ~jj would be the same on the 2 r elements of X 0 which
are pullbacks of the same element of Y 0, and the restriction of r to the subspace

X 00 ¼ fð1; . . . ; 1Þg � Y 0 of X 0 ¼ dðZ=2ZÞðZ=2ZÞr � Y 0 would be anisotropic. Indeed, the res-
idue form ðrjX 0 Þð1;...;1Þ would be anisotropic of dimension dim r over Y 0, and the

image of this form via the isomorphism between Y 0 and X 00 is rjX 00 . This way we
would get again a contradiction with the minimality of the cardinality of X 0.
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Denote by W1; . . . ;Wd 0 the walls containing Z, and by d the codimension of Z in
V . As the walls have normal crossings intersections, we have dd d 0. Let P1; . . . ;Pr

be polynomials on V describing the ðj�1ðmÞÞ� for m A Z. Since by assumption all
the Pj’s are at normal crossings, there is a regular system of parameters ðx1; . . . ; xdÞ
of RðVÞp such that each Pj is a monomial in RðVÞp for this system, i.e.

Pj ¼ ujx
m1; j

1 . . . x
md; j

d with uj a unit of RðVÞp, and m1; j ; . . . ;md; j some integers. For
i ¼ 1; . . . ; d 0, at least one of the Pj’s vanishes on Wi. So we may assume that fxi ¼ 0g
corresponds to the wall Wi for i ¼ 1; . . . ; d 0.

Consider now the discrete valuation ring C dominating RðVÞp with the same resi-
due field, as explained in Example 1.3, using the parameters ðx1; . . . ; xdÞ. Let X be
the pullback of Y via C. In particular, X is the pullback of a subspace X1 of SW1

via
RðVÞIðW1Þ. We will prove that rjX is anisotropic.

We consider the mapping y : X 0 ! X , which maps an element s 0 of X 0, pullback
of t 0 A Y 0, to the element s of X , which is a pullback of the restriction of t 0 in Y and
satisfies ðsgn xiÞðsÞ ¼ ðsgn xiÞðs 0Þ for i ¼ 1; . . . ; d. We want to prove that y is a mor-
phism of spaces of orderings (cf. [11, 2.1]).

Let f : X ! f�1; 1g be the restriction to X of the sign of an element of KðVÞ. We
have to prove that g ¼ f � y : X 0 ! f�1; 1g is the restriction to X 0 of the sign of an
element of KðVÞ. If this were not the case, by [3, IV.7.2.a)], there would be a four-
element fan F 0 of X 0 such that g is positive on exactly an odd number of elements of
F 0. Denote F 0 ¼ fs 0

1; s
0
2; s

0
3; s

0
4g with, say, g positive on fs 0

1; s
0
2; s

0
3g and negative on

fs 0
4g. Let sl ¼ yðs 0

l Þ for l ¼ 1; 2; 3; 4 and F ¼ fs1; s2; s3; s4g. Then f would be posi-
tive on fs1; s2; s3g and negative on fs4g.

We prove that F is a four-element fan of X . Denote by t 0l the element of Y 0 induced
by s 0

l and by tl the restriction of t 0l in Y , for l ¼ 1; 2; 3; 4. As F 0 is a fan, we have
t 04 ¼ t 01t

0
2t

0
3 hence t4 ¼ t1t2t3, and if i A f1; . . . ; dg then

ðsgn xiÞðs4Þ ¼ ðsgn xiÞðs 0
4Þ ¼

Y3
l¼1

ðsgn xiÞðs 0
l Þ ¼

Y3
l¼1

ðsgn xiÞðslÞ:

This proves that s4 ¼ s1s2s3, and F is a fan. The possible cardinalities for F are 1; 2
and 4. If the cardinality of F is not four, the value of f implies s1 ¼ s2 ¼ s3 0 s4.
But on the other hand s4 ¼ s3

1 ¼ s1, a contradiction. Therefore F is a four-element
fan and we get that f is positive on exactly three elements of F , which is not possible
by [3, III.3.8]. We conclude that g is the restriction to X 0 of the sign of an element of
KðVÞ, and that y : X 0 ! X is a morphism of spaces of orderings.

Remark that the value of j at an element of SV inducing an ordering on KðZÞ, is
determined by this induced ordering, and by the signs given to x1; . . . ; xd . So for any
s 0 A X 0 we have ~jjðyðs 0ÞÞ ¼ ~jjðs 0Þ.

Let h f1; . . . ; fsi be a form over X , of signature ~jjjX . Then ~jjjX 0 ¼ ð~jj � yÞjX 0 ¼Ps
j¼1 fj � y, where fj � y is the restriction to X 0 of the sign of an element of KðVÞ

since y is a morphism of spaces of orderings. We conclude that sdNðjÞ, and that
rjX is anisotropic.
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We consider now the space X1. The functions qW1
j and q t

W1
j correspond to the

functions c 0 and c 00 of Lemma 2.2, and we have

NðjÞ ¼ NðX ; ~jjjX Þ ¼ NðX1; gqW1
jqW1
jjX1

Þ þNðX1;
gq t
W1

jq t
W1

jjX1
ÞcNðqW1

jÞ þNðq t
W1

jÞ:

The proof is complete.

2.4 The Nash case. Recall that a Nash function on RN is a function which is both
analytic and semi-algebraic, and a Nash subset of RN is a zero set of Nash functions.

Let V HRN be a Nash set. In [9] McCrory and Parusiński introduced Nash con-

structible functions on V : their definition is similar to that of algebraically construc-
tible functions, but now the fibres are restricted to connected components of algebraic
sets. More precisely, j : V ! Z is Nash constructible if for i ¼ 1; . . . ; r, there are an
integer mi, a regular proper morphism fi from an algebraic set Zi to V , and a con-
nected component Ti of Zi such that

jðxÞ ¼
Xr

i¼1

miwð f �1
i ðxÞVTiÞ for x A V :

(Here w denotes the Euler characteristic.) In particular, algebraically constructible
functions are Nash constructible.

If j : V ! Z is a constructible function, we define a Nash wall of j as a Nash-
irreducible component, of codimension one in V , of the Nash closure of the Euclidian
boundary of a ðj�1ðkÞÞ�. In [6] we proved that if V is compact and non-singular, and
if the Nash walls of j are non-singular with normal crossings intersections, then j is
generically Nash constructible on V if and only if j is generically a sum of signs of
Nash functions on V . If V is compact, but these regularity assumptions do not hold,
this is not true: in this case, Nash constructible functions coincide with sums of signs
of semi-algebraic arc-analytic functions.

Assume that V is compact and non-singular, and that the Nash walls of j are non-
singular with normal crossings intersections. In this case, for a Nash wall W , the
functions qWj and q t

Wj also are generically sums of signs of Nash functions. We
transpose Theorem 2.6 to this case:

Proposition 2.8. Let V HRN be a compact Nash set which is Nash-irreducible and

non-singular. Let j : V ! Z be a Nash constructible function whose Nash walls are

non-singular with normal crossings intersections. Denote by NNðjÞ the minimal number

of Nash functions (counted with multiplicities) needed to write generically j as a sum of

signs of Nash functions. Then

NNðjÞ ¼ max
n
MðjÞ; max

W Nash wall of j
ðNNðqWjÞ þNNðq t

WjÞÞ
o
:

Proof. We repeat the proof of Theorem 2.6, working with the ring NðVÞ of Nash
functions on V instead of the ring of rational functions.
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The ring NðVÞ is noetherian by [5, Theorem 8.7.18]. If m is a maximal ideal of
NðVÞ, then m is the ideal of Nash functions vanishing at a point in M by [5, Cor-
ollary 8.6.3] and NðVÞm is a regular local ring by [5, Proposition 8.7.15]. So NðVÞp
is a regular local ring for any prime ideal p of NðVÞ, i.e. the ring NðVÞ is regular.
This allows us to build the discrete valuation ring denoted by C in the proof of The-
orem 2.6. r

As in the algebraic case, we can determine NNðjÞ by induction on the dimension,
since in dimension one we have NNðjÞ ¼ MðjÞ.

Remark 2.9. The formulas given in Theorem 2.6 and Proposition 2.8 are very similar.
However NðjÞ and NNðjÞ are not the same in general, even if V HRN is a com-
pact real algebraic set which is Nash-irreducible and non-singular, and if j is an
algebraically constructible function on V with non-singular and normal crossings
walls.

For instance, let V ¼ RP2 with the coordinates ðx0 : x1 : x2Þ, and let C be the cubic
of V with the equation x0x

2
2 ¼ x1ðx2

1 � x2
0Þ. We define an algebraically constructible

function j on V in the following way:

There is only one (algebraic) wall: the cubic C, and we have NðqWjÞ ¼ Nðq t
WjÞ ¼ 2,

so NðjÞ ¼ 4. There is also only one Nash wall: the connected component C1 of C,
and we have NNðqWjÞ ¼ 0 and NNðq t

WjÞ ¼ 2. So NNðjÞ ¼ 20NðjÞ.

3 Represented polynomials

3.1 Algebraic tools.

Definition 3.1 ([3], III.1.18). Let ðX ;GÞ be a space of orderings and r a form of
dimension d over X . We define

DX ðrÞ ¼ fg A G j bg2; . . . ; gd A G : r ¼ hg; g2; . . . ; gdi over Xg:

An element of DX ðrÞ is said to be represented by r over X.
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Example 3.2. If r is isotropic, then it is clear that DX ðrÞ ¼ G. Actually, these two
conditions are equivalent ([11, 2.2.6(3)]).

The following lemma explains the behaviour of DX ðrÞ under additions and
extensions.

Lemma 3.3. Let X be a space of orderings and r a form over X.
If X ¼ X1 þ X2 and r ¼ ðr1; r2Þ where rj is a form over Xj for j ¼ 1; 2, then

DX ðrÞ ¼ DX1
ðr1Þ �DX2

ðr2Þ:

If X ¼ Y ½H� and r is anisotropic, write r ¼
P

h AH hrh. Then

DX ðrÞ ¼
G
h AH

hDY ðrhÞ:

Proof. The first point is clear, the second one is given by [3, IV.2.12.b)]. r

Remark 3.4. Let X be a space of orderings, and let r1; . . . ; rn be forms over X .
Assume that X ¼ X1 þ X2 and denote ri ¼ ðri;1; ri;2Þ. Then 7n

i¼1
DX ðriÞ ¼ q if

and only if 7n

i¼1
DX1

ðri;1Þ ¼ q or 7n

i¼1
DX2

ðri;2Þ ¼ q.

Assume that X ¼ Y ½H� and that the ri’s are anisotropic. Write ri ¼
P

h AH hri;h.
Then 7n

i¼1
DX ðrÞ ¼ q if and only if for any h A H, we have 7n

i¼1
DY ðri;hÞ ¼ q.

These two conditions follow easily from the previous lemma.

The aim of this section is to derive a geometric version of the following result ([3,
IV.6.1.b)], [11, 4.3.2]) in the frame of algebraically constructible functions:

Theorem 3.5 (Local-global principle). Let r1; . . . ; rn be forms over a space of order-

ings X. If 7n

i¼1
DX ðrÞ ¼ q, then there exists a finite subspace Y of X such that

7n

i¼1
DY ðrjY Þ ¼ q.

3.2 The geometric result. Let V HRN be an irreducible real algebraic set. If j is an
algebraically constructible function on V , we copy the definition given in Part 3.1 for
forms. We say that a polynomial P A PðVÞ is represented by j on V if there exist
P2; . . . ;PNðjÞ A PðVÞ such that j is generically equal to sgnPþ

PNðjÞ
j¼2 sgnPj on V .

In this case, we will say also that sgnP is represented by j. We denote by DV ðjÞ the
set of the polynomials represented by j on V .

So, if r is the anisotropic form over SV representing ~jj and P a polynomial on V ,
then P belongs to DV ðjÞ if and only if the sign of P (on SV ) belongs to DSV

ðrÞ.

Theorem 3.6. Let V HRN be an irreducible real algebraic set which is compact and

non-singular. Let j1; . . . ; jn be algebraically constructible functions on V such that all
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the walls of the ji’s are non-singular with normal crossings intersections. We assume

that none of the ji’s is generically equal to zero.

Then 7n

i¼1
DV ðjiÞ ¼ q if and only if

� there exist i; i 0 A f1; . . . ; ng, and SHV semi-algebraic of dimension dimV , such that

MðjiÞ ¼ NðjiÞ, Mðji 0 Þ ¼ Nðji 0 Þ, and jijS ¼ �MðjiÞ, ji 0 jS ¼ Mðji 0 Þ,

or

� there is a wall W of one of the ji’s such that, if we fix a polynomial uniformizer t of

RðVÞIðW Þ and if we denote JW ¼ fi A f1; . . . ; ng jNðjiÞ ¼ NðqWjiÞ þNðq t
WjiÞg,

then 7
i A JW

DW ðqWjiÞ ¼ q and 7
i A JW

DW ðq t
WjiÞ ¼ q.

Remark 3.7. The condition 7
i A JW

DW ðq t
WjiÞ ¼ q is independent of the chosen t.

Indeed, let t 0 be another polynomial uniformizer of RðVÞIðW Þ. If a polynomial P
belongs to DW ðq t

WjiÞ, then t � t 0 � P belongs to DW ðq t 0

WjiÞ.

Remark 3.8. If there is i A f1; . . . ; ng such that ji ¼gen 0 on V , then DV ðjiÞ ¼ q, so
7n

i¼1
DV ðjiÞ ¼ q.

As Theorem 2.6, Theorem 3.6 reduces a problem in dimension dimV to a finite
number of similar problems in lower dimension. By induction on the dimension, we
have to solve similar problems in dimension 1. In this case, only the first condition of
Theorem 3.6 remains, and for any function ji we have NðjiÞ ¼ MðjiÞ, so we can
check easily if 7n

i¼1
DV ðjiÞ ¼ q.

Remark 3.9. Again, we can transpose Theorem 3.6 from the algebraic case to the
Nash case, by working with the ring of Nash functions instead of the ring of poly-
nomials. We get the same results with Nash walls instead of walls.

3.3 Proof of Theorem 3.6. We denote G ¼ fðsgnPÞ : SV ! Z=2Z jP A PðVÞnf0gg.
For i ¼ 1; . . . ; n, let ri be the anisotropic form over SV representing ji.

We assume first that there is a polynomial P A 7n

i¼1
DV ðjiÞ. Then, if i satisfies

MðjiÞ ¼ NðjiÞ, the sign of P and the sign of ji must be generically equal on the semi-
algebraic set fjjij ¼ MðjiÞg. So the first point of the theorem is not possible.

Consider a wall W of one of the ji’s, and a uniformizer t of RðVÞIðW Þ. We embed

the space X ¼ SW ½Z=2Z� into SV via this ring, so that for any s A SW we have
ðsgn tÞð1; sÞ ¼ 1. If i A JW , then rijX is anisotropic. For such an i, write rijX ¼
r 0
i þ ar 00

i , where r 0
i and r 00

i are anisotropic forms over SW representing qWj and q t
Wj

respectively. As ðsgnPÞjX belongs to 7
i A JW

DX ðriÞ, we get that 7i A JW
DSW

ðr 0
i Þ0q

or 7
i A JW

DSW
ðr 00

i Þ0q by Remark 3.4. In terms of algebraically constructible func-

tions, this means that 7
i A JW

DW ðqWjiÞ0q or 7
i A JW

DW ðq t
WjiÞ0q. The first

implication is proved.
Conversely, assume that 7n

i¼1
DV ðjiÞ ¼ q, so 7n

i¼1
DSV

ðriÞ ¼ q. By Theorem

3.5, there is a finite subspace X 0 of SV such that 7n

i¼1
DX 0 ðrijX 0 Þ ¼ q. We choose
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X 0 of minimal cardinality for this property. Then, by Remark 3.4, the space X 0

is not a sum. According to the structure theorem, X 0 is the atomic space or an
extension.

First case. X 0 ¼ E. Denote by s the element of X 0. There is i A f1; . . . ; ng such
that rijX 0 is anisotropic (else 7n

i¼1
DX 0 ðrijX 0 Þ would be fX 0 ! f1g;X 0 ! f�1gg).

For such an i, we have jr̂riðsÞj ¼ dim ri ¼ NðjiÞ ¼ MðjiÞ, and DX 0 ðrijX 0 Þ only
contains the function s 7! sgnð~jjiðsÞÞ. We deduce from this the first point of the
theorem.

Second case. X 0 ¼ Y 0½ðZ=2ZÞ r� where Y 0 is not an extension. We copy the construc-
tion of the proof of Theorem 2.6: let B be a valuation ring of KðVÞ such that Y 0 is a
subspace of the real spectrum of the residue field k of B, and X 0 is a subspace of the
pullback of Y 0 via B. As before we denote by p the restriction of the maximal ideal
of B to RðVÞ, by Z the zero set of p in V , and by Y the subspace of SZ generated by
the restrictions to KðZÞ of the elements of Y 0.

We claim that the set Z is contained in at least one wall of one of the ji’s.
Otherwise, as in the proof of Theorem 2.6, the value of ji would be the same
on the 2r pullbacks in X 0 of the same element of Y 0, for i ¼ 1; . . . ; n. Consider
X 00 ¼ fð1; . . . ; 1Þg � Y 0, and denote J 0 ¼ fi A f1; . . . ; ng j rijX 0 anisotropicg. Then,
for i A J 0, we would have DX 0 ðrijX 0 Þ ¼ DY 0 ððrijX 0 Þð1;...;1ÞÞ. As 7

i A J 0 DX 0 ðrijX 0 Þ ¼ q,

we would get 7
i A J 0 DY 0 ððrijX 0 Þð1;...;1ÞÞ ¼ q, and by the isomorphism between X 00

and Y 0 we would have 7
i A J 0 DX 00 ðrijX 00 Þ ¼ q. This would contradict the minimality

of the cardinality of X 0.
Let W1; . . . ;Wd 0 be the walls of the ji’s containing Z. We repeat the construction

of the proof of Theorem 2.6. We get a space of orderings X and a morphism of
spaces of orderings y : X 0 ! X . We prove that 7n

i¼1
DX ðrijX Þ ¼ q.

Else, there would be an element f A G such that for every i A f1; . . . ; ng, there exist
gi;2; . . . ; gi; ri A G with ri ¼ dim ri and ri jX ¼ h f ; gi;2; . . . ; gi; riijX . For every s 0 A X 0,

we would have ~jjiðs 0Þ ¼ ð~jji � yÞðs 0Þ ¼ ð f � yÞðs 0Þ þ
Pri

j¼2ðgi; j � yÞðs 0Þ. As y is a mor-
phism of spaces of orderings, f � y and all the gi; j � y would be restrictions to X 0 of
elements of G, and f � y would be in 7n

i¼1
DX 0 ðrijX 0 Þ. We would get a contradiction.

So we have 7n

i¼1
DX ðrijX Þ ¼ q.

We can write X ¼ X1½Z=2Z� where X1 is a subspace of SW1
. Denote J ¼

fi A f1; . . . ; ng j rijX anisotropicg. We have 7
i A J DX ðrijX Þ ¼ q. If i A J, the restric-

tion rijSW1
½Z=2Z� is a fortiori anisotropic, so i A JW1

and 7
i A JW1

DX ðrijX Þ ¼ q. By

Remark 3.4, we get 7
i A JW1

DX1
ððrijX Þ1Þ ¼q and 7

i A JW1

DX1
ððrijX ÞaÞ ¼q. In terms

of algebraically constructible functions, this means that 7
i A JW1

DW1
ðqW1

jiÞ ¼ q and
7

i A JW1

DW1
ðq t

W1
jiÞ ¼ q. The theorem is proved.

3.4 Recognizing represented polynomials. If j is an algebraically constructible func-
tion on an irreducible real algebraic set V HRN , and if P is a polynomial on V , we
can ask if P is represented by j. We give the following answer, using Theorem 2.6
and the fact that P is represented by j if and only if Nðj� sgnPÞ ¼ NðjÞ � 1. Note
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that, if W is an hypersurface, then qW sgnP and q t
W sgnP are generically signs of

polynomials.

Corollary 3.10. Let V HRN be an irreducible real algebraic set which is compact

and non-singular. Let j : V ! Z be an algebraically constructible function, and let

P A PðVÞnf0g. We assume that the walls of j and sgnP are non-singular with normal

crossings intersections, and that j is not generically equal to zero.
Then P is represented by j if an only if

� if MðjÞ ¼ NðjÞ, then P has generically the same sign as j on the semi-algebraic set

where jjj ¼ MðjÞ,
and

� for any wall W of j such that NðjÞ ¼ NðqWjÞ þNðq t
WjÞ,

– if W is a wall of sgnP, then q t
W sgnP is represented by q t

Wj,

– if W is not a wall of sgnP, then qW sgnP is represented by qWj,

and

� for any wall of sgnP which is not a wall of j, we have NðjÞ > NðqWjÞ.

Remark 3.11. In dimension 1, only the first condition remains: P is represented by j

if and only if sgnP ¼ sgn j on fjjj ¼ MðjÞg except at a finite number of points. As
before, using induction on the dimension, we can reduce to this case.
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