Symplectic translation planes and line ovals

Antonio Maschietti

(Communicated by G. Korchmáros)

Abstract. A symplectic spread of a 2*n*-dimensional vector space V over GF(q) is a set of $q^n + 1$ totally isotropic *n*-subspaces inducing a partition of the points of the underlying projective space. The corresponding translation plane is called symplectic. We prove that a translation plane of even order is symplectic if and only if it admits a completely regular line oval. Also, a geometric characterization of completely regular line ovals, related to certain symmetric designs $\mathscr{S}^1(2d)$, is given. These results give a complete solution to a problem set by W. M. Kantor in apparently different situations.

Key words. Translation plane, symplectic spread, line oval, regular triple, Lüneburg plane, symmetric design.

1 Introduction

Let Π_q be a finite projective plane of order q. An *oval* is a set of q + 1 points, no three of which are collinear. Dually, a *line oval* is a set of q + 1 lines no three of which are concurrent. Any line of the plane meets the oval \mathcal{O} at either 0, 1 or 2 points and is called exterior, tangent or secant, respectively. For an account on ovals the reader is referred to [1], [2] and [7]. If the the order of the plane is even all the tangent lines to the oval \mathcal{O} concur at the same point N, called the *nucleus* (or the knot) of \mathcal{O} . The set $\mathcal{O} \cup \{N\}$ becomes a *hyperoval*, that is a set of q + 2 points, no three of which are collinear. A *regular hyperoval* is a conic plus its nucleus in a desarguesian plane. If \mathcal{O} is a line oval, then there is exactly one line n such that on each of its points there is only one line of \mathcal{O} . This line n is called the (dual) *nucleus* of \mathcal{O} . The (q + 2)-set $\mathcal{O} \cup \{n\}$ is a *line hyperoval* or *dual hyperoval*.

Let \mathscr{A}_q be a translation plane of even order $q = 2^d$ and \mathscr{O} a line oval whose nucleus is the line at infinity. Let T be the translation group of \mathscr{A}_q and A its set of points. Identifying the elements of A with those of T and using addition as the operation on A, define

$$B(\mathcal{O}) = \{ P \in A \mid P \text{ is on a line of } \mathcal{O} \}.$$

In [3], Theorem 7, it is proved that $B(\mathcal{O})$ is a difference set in the abelian group A. The corresponding symmetric design $\mathcal{D}(\mathcal{O})$ has parameters

$$v = q^2$$
, $k = \frac{q^2}{2} + \frac{q}{2}$, $\lambda = \frac{q^2}{4} + \frac{q}{2}$.

This design has the same parameters as certain designs $\mathscr{S}^1(2d)$, see [3] and also Section 2. In two cases Kantor proved, see [3], Theorems 8 and 9, that $\mathscr{D}(\mathcal{O})$ is isomorphic to $\mathscr{S}^1(2d)$, namely

- 1. \mathscr{A}_q is desarguesian and \mathscr{O} is a line conic (i.e. \mathscr{O} becomes a conic in the dual of the projectivization of \mathscr{A}_q);
- 2. \mathscr{A}_q is the Lüneburg plane of order q, where $q = 2^{2d}$ with d > 1 odd and \mathscr{O} is a suitable line oval.

Such a line oval in the Lüneburg plane has the property of being stabilised by a collineation group isomorphic to the Suzuki group $Sz(2^d)$ acting 2-transitively on its lines. Its existence was first proved in [3] by methods related to the symmetric design $\mathscr{S}^1(2d)$. There is also a direct construction, based on analytical methods, see [6].

Quite naturally W. M. Kantor raised the problem of finding out which translation planes were related to $\mathscr{S}^1(2d)$ and which geometric conditions on a line oval of a translation plane of order 2^d were necessary and sufficient in order that $\mathscr{D}(\mathcal{O})$ be isomorphic to $\mathscr{S}^1(2d)$.

The aim of this paper is to give a complete solution to the above problem. To get such a solution results about *P*-regular line ovals are used. In [9] and [10] ovals admitting a strongly regular tangent line are investigated. Here we need analogous results in a dual setting. So, we recall some basic definitions.

Definition 1. Let \mathcal{O} be an oval with nucleus N in Π_q , where $q \ge 8$ is even. A tangent line s to \mathcal{O} is *strongly regular* if for every pair of distinct points $X, Y \in s \setminus ((s \cap \mathcal{O}) \cup \{N\})$ there is a third point $Z \in s \setminus ((s \cap \mathcal{O}) \cup \{N\})$ such that for every point $P \ne N$ of Π_q at least one of the lines PX, PY, PZ is a secant line. Each non-ordered triple of points with the above property is called *s-regular*.

The dual definition is as follows. Let \mathcal{O} be a line oval of Π_q , q even, and n its nucleus. Denote by $\Pi_q^n = \mathscr{A}_q$ the affine plane deduced by Π_q by deleting the line n and by A the set of points of \mathscr{A}_q . As above, set

$$B(\mathcal{O}) = \{ P \in A \mid P \text{ is on a line of } \mathcal{O} \}.$$

Let \mathscr{F}_P denote the pencil of lines on *P*, where *P* is a point of Π_q .

Definition 2. Let \mathcal{O} be a line oval with nucleus *n* and *P* a point on *n*. \mathcal{O} is called *P*-regular if for any pair of distinct affine lines $x, y \in \mathscr{F}_P \setminus (\mathscr{F}_P \cap \mathcal{O})$ there is a third affine line $z \in \mathscr{F}_P \setminus (\mathscr{F}_P \cap \mathcal{O})$ such that for every affine line ℓ not on *P* at least one of the points $\ell \cap x$, $\ell \cap y$ or $\ell \cap z$ belongs to $B(\mathcal{O})$. Each non-ordered triple of lines sharing the above property is called *P*-regular.

In [9], Theorem 3, it is proved that if the oval \mathcal{O} has a strongly regular tangent line, then the order q of the plane is a power of 2. By duality the same result holds in the case of a *P*-regular line oval.

Known examples of ovals with a strongly regular tangent line are the translation ovals, see [9] and [10]. By duality we obtain examples of *P*-regular line ovals.

Non-degenerate conics are characterized by the following result, see [10], Corollary 1.

Theorem 1. In PG(2, 2^d), where $d \ge 3$, an oval 0 is a non-degenerate conic if and only if 0 admits two distinct strongly regular tangent lines.

This shows that a non-degenerate conic admits q + 1 strongly regular tangent lines.

Definition 3. An oval \mathcal{O} with nucleus N is called *completely N-regular* if every line on $N \in \mathcal{O}$ is strongly regular.

We need the dual definition.

Definition 4. A line oval \mathcal{O} is called *completely regular* with respect to its nucleus *n* if \mathcal{O} is *P*-regular for every point *P* on *n*.

Our main results are summarized in the following theorems.

Theorem 2. Let \mathscr{A}_q be a translation plane of even order $q = 2^d$, where $d \ge 3$, and \mathscr{O} a line oval whose nucleus is the line at infinity n. Then $\mathscr{D}(\mathscr{O})$ is isomorphic to $\mathscr{S}^1(2d)$ if and only if \mathscr{O} is completely regular with respect to the line n.

In a 2*n*-dimensional vector space over GF(q), equipped with a non-singular alternating bilinear form, a *symplectic spread* is a family of $q^n + 1$ totally isotropic *n*subspaces which induces a partition of the points of the underlying projective space.

Theorem 3. Let \mathcal{A}_q be a translation plane of even order $q = 2^d$, where $d \ge 3$. Then \mathcal{A}_q admits a completely regular line oval with respect to the line at infinity if and only if \mathcal{A}_q is defined by a symplectic spread of a 2d-dimensional vector space over GF(2).

In particular, the above theorem states that any symplectic translation plane of even order admits a line oval, a well known result, see [12]. There are many examples of symplectic translation planes, see [4] and [5]. So there are many examples of completely regular line ovals. Note that the above theorem answers the question of finding an internal criterion for a translation plane to be symplectic, see [5], page 318.

The paper is organized as follows. In Section 2 we fix some notation and introduce the designs $\mathscr{D}(\mathscr{O})$ and $\mathscr{S}^1(2d)$. Section 3 is devoted to prove that the only translation planes admitting a completely regular line oval are the symplectic ones. This is the content of Theorem 3 above. Also, a method to determine explicitly the regular triples of a completely regular line oval is described.

Antonio Maschietti

Finally in Section 4 we prove that, for a completely regular line oval \mathcal{O} in a translation plane, $\mathcal{D}(\mathcal{O}) \cong \mathscr{S}^1(2d)$ holds. This result and those of Section 3 will provide a proof of Theorem 2.

2 Preliminary results

We will use fairly standard notation. In particular, dealing with planes or symmetric designs, points will be denoted by P, Q, ..., X, Y, Z, lines by $\ell, m, ..., r, s, ..., x, y, z$ and blocks by a, b, ..., x. The symbol \mathscr{F}_P will denote the pencil of lines of a projective plane through the point P. Sometimes the line through two distinct points P and Q will be denoted by PQ.

If T is a finite set, then |T| denotes the size of T, $\mathscr{C}T$ the complement of T and $T \setminus S$ the set of elements of T not in S. Finally, if $h : A \to B$ is a map between the sets A and B, then P^h is the image under h of the element $P \in A$ (in some cases also the symbol h(P) is used).

Let Π_q be a projective plane of even order q, \mathcal{O} a line oval with nucleus n and $\mathcal{A}_q = \Pi_q^n$ the affine plane deduced from Π_q by deleting the line n. Let \mathcal{L} be its set of affine lines. Denote by $B(\mathcal{O})$ the set of affine points which are on the lines of \mathcal{O} and by $\mathscr{C}B(\mathcal{O})$ its affine complement. It is easy to prove that

$$|B(\mathcal{O})| = \frac{q(q+1)}{2}, \quad |\mathscr{C}B(\mathcal{O})| = \frac{q(q-1)}{2},$$

and if $R \in B(\mathcal{O})$ then there are two lines of \mathcal{O} through R. Moreover, if $\ell \notin \mathcal{O}$ is any affine line then

$$|\ell \cap B(\mathcal{O})| = |\ell \cap \mathscr{C}B(\mathcal{O})| = \frac{q}{2}$$

The following proposition is a useful criterion to decide if a set of q + 2 lines of Π_q is a line hyperoval.

Proposition 1. Let Ω be a set of q + 2 lines of Π_q . Then Ω is a line hyperoval if and only if the number of points which are not on the lines of Ω is greater than or equal to q(q-1)/2.

Proof. (See also [11], Theorem 3) Let $k \ge 2$ be the maximum number of concurrent lines of Ω and t_s the number of points which are on *s* lines of Ω , s = 0, 1, ..., k. By a standard counting argument

$$\sum_{s=0}^{k} t_s = q^2 + q + 1 \tag{1}$$

$$\sum_{s=1}^{k} st_s = (q+1)(q+2)$$
(2)

Symplectic translation planes and line ovals

$$\sum_{s=2}^{k} s(s-1)t_s = (q+2)(q+1).$$
(3)

127

Subtracting Equation (3) from (2)

$$t_1 - \sum_{s=3}^k s(s-2)t_s = 0.$$
(4)

Since $t_0 \ge q(q-1)/2$, elimination of t_1 from (1) and (4) gives

$$t_2 + \sum_{s=3}^{k} (s^2 - 2s + 1) t_s \leqslant q^2 + q + 1 - \frac{q(q-1)}{2}.$$
 (5)

From (3)

$$2t_2 = (q+2)(q+1) - \sum_{s=3}^k s(s-1)t_s.$$
 (6)

From (5) and (6)

$$\sum_{s=3}^{k} (s^2 - 3s + 2)t_s \leqslant 0.$$

As $s^2 - 3s + 2 > 0$ for any $s \ge 3$, we infer $t_s = 0$ for any $s \ge 3$. Therefore $k \le 2$, that is Ω is a line hyperoval. The converse is trivial.

For the theory of translation planes we refer to [8]. Let \mathscr{A}_q be a translation plane of even order $q = 2^d$, where $d \ge 3$, T its translation group and \mathscr{O} a line oval with nucleus the line at infinity n. Note that \mathscr{O}^g is a line oval with nucleus n for every $g \in T$. Also, if \mathscr{O}^g and \mathscr{O}^h , $g, h \in T$, are distinct line ovals, then they have exactly one line in common.

For every $g \in T$, let $B(\mathcal{O}^g)$ be the set of affine points which are on the lines of \mathcal{O}^g . Denote by $\mathcal{D}(\mathcal{O})$ the incidence structure whose *points* are the points of \mathcal{A}_q and whose *blocks* are the sets $B(\mathcal{O}^g)$, $g \in T$.

Theorem 4. $\mathcal{D}(\mathcal{O})$ is a symmetric design with parameters

$$v = q^2, \quad k = \frac{q(q+1)}{2}, \quad \lambda = \frac{q^2}{4} + \frac{q}{2}.$$

Proof. (see also [3], Theorem 7 (i)) The number of points is q^2 and equals the number of blocks. Each block contains q(q + 1)/2 points, which is the total number of points

which are on the lines of a line oval. It remains to prove that any two distinct blocks have $q^2/4 + q/2$ common points. Consider any two distinct line ovals \mathcal{O}^g and \mathcal{O}^h . Let *s* be the unique line they have in common and S_m the point $n \cap s$. For any line ℓ of the plane not in \mathcal{O}^h there are q/2 points of $B(\mathcal{O}^h)$ which belong to ℓ , one of which is $\ell \cap s$. Let ℓ vary on $\mathcal{O}^g \setminus \{s\}$. Since a point on $\ell \cap B(\mathcal{O}^g)$ not on *s* is also determined by another line of \mathcal{O}^g , we have q/2(q/2 - 1) common points. To these we add the *q* points on *s* (excluding S_m) to obtain $q^2/4 + q/2$ common points.

We introduce now another symmetric design, having the same parameters as $\mathcal{D}(\mathcal{O})$ and investigated in [3]. So our reference is [3], with only some minor change in notation. We use only one type of orthogonal group of a 2*d*-dimensional vector space over GF(2), namely $O^+(2d, 2)$, which is the linear group preserving a non-degenerate quadratic form with index *d*. The symplectic group of a 2*d*-dimensional vector space over GF(2) will be denoted by Sp(2*d*, 2).

If S and T are sets of points of a design, then $S \triangle T$ is the symmetric difference $(S \cup T) \setminus (S \cap T)$.

Set

$$H(2) = \begin{pmatrix} -1 & 1 & 1 & 1\\ 1 & -1 & 1 & 1\\ 1 & 1 & -1 & 1\\ 1 & 1 & 1 & -1 \end{pmatrix}.$$

For each positive integer d, let H(2d) be the tensor product of d copies of H(2). Rows and columns of H(2d) can be regarded as the points and blocks of a symmetric design $\mathscr{S}^1(2d)$, a point being on a block if and only if the corresponding entry is 1. $\mathscr{S}^1(2d)$ has parameters

$$v = 2^{2d}, \quad k = 2^{2d-1} + 2^{d-1}, \quad \lambda = 2^{2d-2} + 2^{d-1}.$$

Theorem 5. Let \mathscr{D} be a symmetric design admitting a sharply point-transitive automorphism group *T*. Define addition of points so that *T* is the set of right translations of the group *G* of the points. Then the following statements are equivalent.

- 1. \mathcal{D} is isomorphic to $\mathcal{S}^1(2d)$ for some d.
- 2. $b \triangle c$ is a left coset of a subgroup of G whenever b and c are distinct blocks.
- 3. $\mathscr{C}(\mathbf{b} \triangle \mathbf{c})$ is a left coset of a subgroup of G whenever \mathbf{b} and \mathbf{c} are distinct blocks.

Proof. See [3], Theorem 2.

In [3], Section 4, the full automorphism group \mathscr{G} of $\mathscr{S}^1(2d)$ is completely determined: it is a semidirect product of the translation group T of the 2*d*-dimensional affine geometry over GF(2), AG(2*d*, 2), with Sp(2*d*, 2). Moreover, if \mathbf{x} is a block, then $\mathscr{G}_{\mathbf{x}}$ is isomorphic to Sp(2*d*, 2) and is 2-transitive on \mathbf{x} and $\mathscr{C}_{\mathbf{x}}$. Finally, if $P \in \mathbf{x}$ then $\mathscr{G}_{P\mathbf{x}}$ is $O^+(2d, 2)$.

It follows that identifying the points of $\mathscr{S}^1(2d)$ with the vectors of a 2*d*-dimensional vector space *V* over GF(2) there exists a quadratic form *Q* with group $O^+(2d, 2)$ such that **x** is the set of singular vectors of *Q* (a vector *v* is a singular vector of *Q* if Q(v) = 0). Therefore $\mathscr{S}^1(2d)$ can be constructed as follows.

Proposition 2. Let V be a 2d-dimensional vector space over GF(2) and Q a nondegenerate quadratic form on V whose group is $O^+(2d, 2)$. Let S(Q) be the set of singular vectors of Q. Then the points and blocks of $\mathscr{S}^1(2d)$ are the vectors of V and the translates $S(Q) + v, v \in V$.

Proof. See [3], Corollary 3.

3 Symplectic translation planes

Let V = V(2n,q) be a 2*n*-dimensional vector space over $\mathbb{F}_q = GF(q)$. Vectors will be denoted by v, w, \ldots, z , subspaces by S, T, U, \ldots, X, Y . A spread of V is a family Σ of $q^n + 1$ *n*-dimensional subspaces of V any two of which have in common the zero vector only. A symplectic spread of V is a spread which consists of totally isotropic subspaces with respect to a non-degenerate alternating bilinear form f.

Let $\Sigma = \{S_0, S_1, \dots, S_{q^n}\}$ be a spread of V and $\mathscr{A}(\Sigma)$ the corresponding translation plane of order q^n , see [8]. If T is its translation group, then the points of $\mathscr{A}(\Sigma)$ are the vectors of V and the lines are the translates of the components of Σ . A translation plane defined by a symplectic spread is said to be *symplectic*.

Fix two distinct component of Σ , say S_0 and S_1 . Then $V = S_0 \oplus S_1$. Choose bases $\{v_1, v_2, \ldots, v_n\}$ in S_0 and $\{w_1, w_2, \ldots, w_n\}$ in S_1 , so that $\mathscr{B} = \{v_1, \ldots, v_n, w_1, \ldots, w_n\}$ is a basis of V. The subspaces S_0 and S_1 are identified with \mathbb{F}_q^n and V with $\mathbb{F}_q^n \times \mathbb{F}_q^n$. Vectors of \mathbb{F}_q^n are identified with $n \times 1$ matrices, represented by symbols like x, y, \ldots .

With respect to the basis \mathscr{B} , the spread Σ determines a set \mathscr{M} of $n \times n$ matrices over \mathbb{F}_q such that (see [8])

- 1. $|\mathcal{M}| = q^n$ and $O \in \mathcal{M}$
- 2. if $A, B \in \mathcal{M}$ and $A \neq B$ then A B is non-singular
- 3. $\mathcal{M}\setminus\{O\}$ acts sharply transitively on $\mathbb{F}_q^n\setminus\{\mathbf{0}\}$.

The set \mathcal{M} is called the *spread-set* associated with Σ . With respect to \mathcal{M} and the basis \mathcal{B}

$$\Sigma = \{ \boldsymbol{x} = \boldsymbol{0} \} \cup \{ \boldsymbol{y} = M\boldsymbol{x} \mid M \in \mathcal{M} \}.$$

Note that we write y = Mx to denote the subspace $\{(x, Mx) | x \in \mathbb{F}_q^n\}$.

From now on we assume that q is a power of 2, $q = 2^d$. Let $\Sigma = \{S_0, S_1, \ldots, S_{q^n}\}$ be a symplectic spread with respect to a non-degenerate alternating bilinear form f. Then the bases in S_0 and S_1 can be chosen so that $f(v_i, w_j) = \delta_{ij}$, where δ_{ij} is the symbol of Kronecker and $i, j = 1, \ldots, n$. Such bases are called *dual*. Therefore in the basis $\mathcal{B} = \{v_1, \ldots, v_n, w_1, \ldots, w_n\}$ of V, f is represented by the matrix

$$\begin{pmatrix} O & I \\ I & O \end{pmatrix}$$

where O and I denote the $n \times n$ zero and identity matrices. Then

$$f((\boldsymbol{x},\boldsymbol{y}),(\boldsymbol{x}',\boldsymbol{y}')) = \boldsymbol{x}^{\top}\boldsymbol{y}' + \boldsymbol{y}^{\top}\boldsymbol{x}',$$

where x, x', y, y' are vectors of \mathbb{F}_2^n , the symbol \top denotes transposition and the product is the ordinary product between matrices. A quadratic form Q which polarises to f (i.e. Q(v+w) = Q(v) + Q(w) + f(v, w) for $v, w \in V$) is

$$Q((\mathbf{x},\mathbf{y})) = \mathbf{x}^\top \mathbf{y}.$$

With respect to this basis the associated spread-set \mathcal{M} consists of symmetric matrices. For, if y = Mx is a component of Σ , then

$$f((\mathbf{x}, M\mathbf{x}), (\mathbf{x}', M\mathbf{x}')) = 0$$

for every $\mathbf{x}, \mathbf{x}' \in \mathbb{F}_q^n$ if and only if $M = M^{\top}$.

The vector space $\mathbb{F}_q^n \times \mathbb{F}_q^n$ can be viewed as a 2*nd*-dimensional vector space over \mathbb{F}_2 . Let $\operatorname{Tr} : \mathbb{F}_q \to \mathbb{F}_2$ be the trace map: $\operatorname{Tr}(x) = \sum_{i=0}^{d-1} x^{2^i}$. Then the bilinear map $f' = \operatorname{Tr} \circ f$ is a non-degenerate alternating bilinear form on $\mathbb{F}_2^{nd} \times \mathbb{F}_2^{nd}$ and $Q' = \operatorname{Tr} \circ Q$ is a quadratic form which polarises to f'. The symplectic spread Σ gives rises to a symplectic spread Σ' of $\mathbb{F}_2^{nd} \times \mathbb{F}_2^{nd}$, such that the plane $\mathscr{A}(\Sigma)$ is identical to the plane $\mathscr{A}(\Sigma')$, see also [5].

The definition of completely regular line oval is in the Introduction, Definition 4.

Theorem 6. Let \mathcal{A}_q be a translation plane of even order $q = 2^d$ with $d \ge 3$ and \emptyset a line oval with nucleus the line at infinity such that $\mathcal{D}(\emptyset) \cong \mathcal{S}^1(2d)$. Then

- 1. \mathcal{A}_q is a symplectic translation plane
- 2. *O* is a completely regular line oval.

Proof. Let $\Sigma = \{S_0, S_1, \ldots, S_q\}$ be a spread of a 2*d*-dimensional vector space V over GF(2) which defines \mathscr{A}_q . We can assume that the lines of \mathscr{O} are $\{S_0, S_1, S_2 + v_2, \ldots, S_q + v_q\}$, where v_2, \ldots, v_q are, in some ordering, the non-zero vectors of S_0 . As $\mathscr{D}(\mathscr{O}) \cong \mathscr{S}^1(2d)$, so, because of Proposition 2, there is a quadratic form on V with group $O^+(2d, 2)$ such that $B(\mathscr{O})$ is the set of singular vectors of Q. Let f be the non-degenerate alternating bilinear on V form polarised by Q, that is

$$f(v,w) = Q(v+w) + Q(v) + Q(w) \quad \text{for } v, w \in V.$$

Let $S(Q) = B(\mathcal{O})$ be the set of singular vectors of Q. Then for every $v \in S(Q)$ the quadratic form Q_v defined by $Q_v(w) = Q(v+w)$, $w \in V$, also polarises to f and its set of singular vectors is S(Q) + v. As $S(Q) = B(\mathcal{O})$, so $S(Q_v) = S(Q) + v = B(\mathcal{O}^{\tau_v})$,

where τ_v is the translation $w \mapsto w + v$. Therefore the subspaces S_i , $i = 0, 1, \ldots, q$, are totally isotropic with respect to f. For S_0 and S_1 are totally singular, since they are contained in S(Q), and S_i is contained in $S(Q_{v_i}) = S(Q) + v_i$, $i = 2, \ldots, q$. The spread Σ is then symplectic and \mathcal{A}_q is a symplectic translation plane. This proves item 1 of the theorem.

To prove that \mathcal{O} is completely regular we make use of coordinates to write explicitly its regular triples. Referring back to the construction at the beginning of the section, write $V = S_0 \oplus S_1$ and choose dual bases $\{v_1, \ldots, v_d\}$ in S_0 and $\{w_1, \ldots, w_d\}$ in S_1 so that, in the basis $\mathscr{B} = \{v_1, \ldots, v_d, w_1, \ldots, w_d\}$,

$$f((\boldsymbol{x},\boldsymbol{y}),(\boldsymbol{x}',\boldsymbol{y}')) = \boldsymbol{x}^{\top}\boldsymbol{y}' + \boldsymbol{y}^{\top}\boldsymbol{x}',$$

where $\mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{y}'$ are vectors of \mathbb{F}_2^d . Thus the quadratic form Q is

$$Q((\boldsymbol{x},\boldsymbol{y})) = \boldsymbol{x}^\top \boldsymbol{y}$$

and the points which are on the lines of \mathcal{O} are the vectors $(\mathbf{x}, \mathbf{y}) \in \mathbb{F}_2^d \times \mathbb{F}_2^d$ such that

$$Q(\mathbf{x}, \mathbf{y}) = \mathbf{x}^\top \mathbf{y} = 0$$

The above equation represents the set of points $B(\mathcal{O})$.

Let \mathcal{M} be the spread-set relative to Σ and \mathcal{B} . Then

$$\Sigma = \{ \boldsymbol{x} = \boldsymbol{0} \} \cup \{ \boldsymbol{y} = M\boldsymbol{x} \, | \, M \in \mathcal{M} \}.$$

Recall that \mathcal{M} is a set of 2^d symmetric matrices. The line oval \mathcal{O} is

$$\mathcal{O} = \{ \boldsymbol{x} = \boldsymbol{0} \} \cup \{ \boldsymbol{y} = M\boldsymbol{x} + \boldsymbol{x}_M \, | \, M \in \mathcal{M} \},\$$

where the vector x_M is determined by the condition

$$Q(\mathbf{x}, M\mathbf{x} + \mathbf{x}_M) = \mathbf{x}^\top M\mathbf{x} + \mathbf{x}^\top \mathbf{x}_M = 0 \quad \text{for all } \mathbf{x} \in \mathbb{F}_2^d.$$

If $\mathbf{x} = (x_1, \dots, x_d)^{\top}$, $\mathbf{x}_M = (\alpha_1, \dots, \alpha_d)^{\top}$ and the symmetric matrix M has entries a_{ij} , $i, j = 1, \dots, d$, a calculation proves that

$$\sum_{i=1}^d (a_{ii}x_i^2 + \alpha_i x_i) = 0, \quad \text{for all } x_i \in \mathbb{F}_2.$$

Hence $\alpha_i = a_{ii}$, i = 1, ..., d. We reserve the symbol x_M to denote the vector $(a_{11}, ..., a_{dd})^{\top}$, where $(a_{11}, ..., a_{dd})$ is the main diagonal of the matrix M.

Now we can write the regular triples of \mathcal{O} . Denote by (∞) and (M), $M \in \mathcal{M}$, the points on the line at infinity, corresponding to the subspaces x = 0 and y = Mx, respectively. We claim:

for every triple $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\}$ of distinct vectors of $\mathbb{F}_2^d \setminus \{\mathbf{x}_M\}$ such that $\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3 = \mathbf{x}_M$, the triple of lines of \mathcal{A}_q

$$\{y = Mx + r_1, y = Mx + r_2, y = Mx + r_3\}$$

is (M)-regular.

Also, for every triple $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\}$ of distinct vectors of $\mathbb{F}_2^d \setminus \{\mathbf{0}\}$ such that $\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3 = \mathbf{0}$, the triple

$$\boldsymbol{x} = \boldsymbol{r}_1, \boldsymbol{x} = \boldsymbol{r}_2, \boldsymbol{x} = \boldsymbol{r}_3$$

is (∞) -regular.

To prove the claim, consider the intersection between the line y = Nx + h and the lines of the first triple, where $N \neq M$. We find the vectors

$$v_k = ((N+M)^{-1}(r_k + h), M(N+M)^{-1}(r_k + h) + r_k), \quad k = 1, 2, 3.$$

Since *M* and *N* are symmetric matrices and $r_1 + r_2 + r_3 = x_M$, we have

$$Q(v_1) + Q(v_2) + Q(v_3)$$

= $h^{\top} (N+M)^{-1} M (N+M)^{-1} h + h^{\top} (N+M)^{-1} x_M$
+ $x_M^{\top} (N+M)^{-1} M (N+M)^{-1} x_M + x_M^{\top} (N+M)^{-1} x_M.$

As $\mathbf{x}^{\top} M \mathbf{x} + \mathbf{x}^{\top} \mathbf{x}_M = 0$ for all $\mathbf{x} \in \mathbb{F}_2^d$, putting in the above equation $(N + M)^{-1} \mathbf{h} = \mathbf{x}$ and $(N + M)^{-1} \mathbf{x}_M = \mathbf{y}$, we get

$$Q(\mathbf{v}_1) + Q(\mathbf{v}_2) + Q(\mathbf{v}_3) = (\mathbf{x}^\top M \mathbf{x} + \mathbf{x}^\top \mathbf{x}_M) + (\mathbf{y}^\top M \mathbf{y} + \mathbf{y}^\top \mathbf{x}_M) = 0.$$

Consequently, if two of the vectors v_k , k = 1, 2, 3, are not in $B(\mathcal{O}) = S(Q)$ then the third is in $B(\mathcal{O})$.

The other case is similar.

Now we will prove that any symplectic translation plane admits a completely regular line oval.

Let \mathscr{A}_q be a symplectic translation plane of even order $q = 2^d$, defined by the symplectic spread $\Sigma = \{S_0, S_1, \ldots, S_q\}$ of a 2*d*-dimensional vector space *V* over GF(2), equipped with a non-degenerate alternating bilinear form *f*. Let *Q* be a quadratic form which polarises to *f* and whose group is $O^+(2d, 2)$. Let $S(Q) = \{v \in V | Q(v) = 0\}$ be the set of singular vectors of *Q*. Then

$$|S(Q)| = 2^{2d-1} + 2^{d-1} = \frac{q(q+1)}{2}.$$

Lemma 1. Any maximal totally isotropic subspace U not lying on S(Q) meets S(Q) in a (d-1)-dimensional subspace.

Proof. U has dimension d and the restriction of Q to U gives rise to a linear form on U which is not the zero form, since U is not contained in S(Q). Therefore $S(Q) \cap U = \{v \in U \mid Q(v) = 0\}$ is a hyperplane of U and so its dimension is d - 1.

Lemma 2. S(Q) contains exactly two distinct components of Σ .

Proof. Let k be the number of components of Σ which are contained in S(Q). Since Σ is a spread, then

$$S(Q) = (S_0 \cap S(Q)) \cup \cdots \cup (S_q \cap S(Q))$$

where $(S_i \cap S(Q)) \cap (S_j \cap S(Q)) = (0)$, for $i \neq j$. By the previous lemma

$$|S(Q)| = 1 + k(2^{d} - 1) + (2^{d} + 1 - k)(2^{d-1} - 1).$$

Since $|S(Q)| = 2^{2d-1} + 2^{d-1}$, k = 2 follows.

For any $v \in S(Q)$, the function $Q_v : V \to \mathbb{F}_2$, defined by $Q_v(w) = Q(v+w)$, is a quadratic form on V which polarises to f. Also, the set of singular vectors of Q_v is S(Q) + v. Therefore Lemma 2 applies to each S(Q) + v, with $v \in S(Q)$.

Lemma 3. Let S and T be two distinct components of Σ contained in S(Q). Then for every $v \in S \setminus \{0\}$ there is exactly one component $S_v \in \Sigma$ such that $S_v + v \subset S(Q)$ and $S_v \neq S, S_v \neq T$. Moreover, if $v, w \in S \setminus \{0\}$ and $v \neq w$ then $S_v \neq S_w$.

Proof. Let $v \in S \setminus \{0\}$. Then S(Q) + v contains two distinct components of Σ , one of which is *S*. Let S_v be the other. As $S_v \subset S(Q) + v$, so $S_v + v \subset S(Q)$. Clearly $S_v \neq S$. We claim that $S_v \neq T$. If $S_v = T$, then $T \subset S(Q) \cap (S(Q) + v)$. Therefore for all $z \in T$

$$0 = Q(z) = Q_v(z) = Q(v+z) = Q(v) + Q(z) + f(v,z).$$

Since Q(v) = Q(z) = 0, then f(v, z) = 0 for all $z \in T$, which is absurd.

In a similar way we can prove the last assertion of the lemma. By way of contradiction, let $S_v = S_w$ for some $v \neq w$ in $S \setminus \{0\}$. Then $S_v \subset (S(Q) + v) \cap (S(Q) + w)$. Therefore for all $z \in S_v$

$$0 = Q_v(z) = Q_w(z).$$

Then Q(v + z) = Q(w + z) implies

$$Q(v) + Q(z) + f(v, z) = Q(w) + Q(z) + f(w, z).$$

As Q(v) = Q(w) = 0, so f(v + w, z) = 0 for all $z \in S_v$, which is absurd, as $v + w \in S \setminus \{0\}$.

Theorem 7. Let V be a 2d-dimensional vector space over GF(2), f a non-degenerate alternating bilinear form and $\Sigma = \{S_0, S_1, \dots, S_q\}$ a symplectic spread of V, where $q = 2^d$ and $d \ge 3$. Then the following statements hold.

- 1. The set $\mathcal{O} = \{S_0, S_1, S_2 + v_2, \dots, S_q + v_q\}$, where v_2, \dots, v_q are, in a suitable ordering, the non-zero vectors of S_0 , is a line oval in the translation plane $\mathscr{A}(\Sigma)$ of order $q = 2^d$ defined by Σ .
- 2. The vector set $S_0 \cup S_1 \cup (S_2 + v_2) \cup \cdots \cup (S_q + v_q)$ is the set of singular vectors of a quadratic form Q which polarises to f.
- 3. *O* is completely regular.

Proof. Let Q be a quadratic form which polarises to f and whose group is $O^+(2d, 2)$. Further, let S(Q) be the set of singular vectors of Q. By Lemma 2, S(Q) contains two components of Σ ; let them be S_0 and S_1 . So $S_0 \cup S_1 \subseteq S(Q)$. By Lemma 3, S(Q) contains the subset

$$S_0 \cup S_1 \cup (S_2 + v_2) \cup \cdots \cup (S_q + v_q),$$

where v_2, \ldots, v_q are, in a suitable ordering, the non-zero vectors of S_0 and the sets $S_k + v_k$, $k = 2, \ldots, q$, are pairwise distinct. Then in the translation plane $\mathscr{A}(\Sigma)$ the vector set S(Q) contains q + 1 distinct lines. Denote by \mathscr{O} this set of lines. Since |S(Q)| = q(q+1)/2, then the number of points which are not on the lines of \mathscr{O} is $t_0 \ge q(q-1)/2$, since the vector space has q^2 vectors. Because of Proposition 1, \mathscr{O} is a line oval whose nucleus is the line at infinity. Also, since the number of points which are on its lines is q(q+1)/2, then

$$S(Q) = S_0 \cup S_1 \cup (S_2 + v_2) \cup \cdots \cup (S_q + v_q).$$

This proves statements 1 and 2. Statement 3 follows from Proposition 2 and Theorem 6. $\hfill \Box$

Theorems 7 and 6 prove Theorem 3 stated in the Introduction.

At this point we have a computational tool to describe line ovals when the translation plane is defined by a spread of a vector space over GF(2). However, a translation plane of order q^n is usually constructed from spreads of a 2*n*-dimensional vector space over $\mathbb{F}_q = GF(q)$, with q > 2. Therefore it is useful to illustrate how the methods developed during the proof of Theorem 6 can be applied to this more common situation. So let V = V(2n, q) be a 2*n*-dimensional vector space over $\mathbb{F}_q = GF(q)$, where $q = 2^d$, equipped with a non-degenerate alternating bilinear form f and $\Sigma = \{S_0, S_1, \ldots, S_{q^n}\}$ a symplectic spread of V. Denote by $\mathscr{A}(\Sigma)$ the corresponding translation plane of order q^n . Fix two components of Σ , say S_0 and S_1 and choose dual bases $\{v_1, v_2, \ldots, v_n\}$ in S_0 and $\{w_1, w_2, \ldots, w_n\}$ in S_1 so that Symplectic translation planes and line ovals

$$f((\boldsymbol{x},\boldsymbol{y}),(\boldsymbol{x}',\boldsymbol{y}')) = \boldsymbol{x}^{\top}\boldsymbol{y}' + \boldsymbol{y}^{\top}\boldsymbol{x}',$$

where $\mathbf{x}, \mathbf{x}', \mathbf{y}, \mathbf{y}'$ are vectors of \mathbb{F}_q^n . A quadratic form Q which polarises to f and whose group is $O^+(2n, q)$ is

$$Q((\boldsymbol{x},\boldsymbol{y})) = \boldsymbol{x}^\top \boldsymbol{y}.$$

View the vector space $\mathbb{F}_q^n \times \mathbb{F}_q^n$ as a 2nd-dimensional vector space over \mathbb{F}_2 . Let $\operatorname{Tr} : \mathbb{F}_q \to \mathbb{F}_2$ be the trace map. As explained at the beginning of the section, using the bilinear map $f' = \operatorname{Tr} \circ f$, the symplectic spread Σ gives rises to a symplectic spread Σ' of $\mathbb{F}_2^{nd} \times \mathbb{F}_2^{nd}$, such that the plane $\mathscr{A}(\Sigma)$ is identical to the plane $\mathscr{A}(\Sigma')$. Because of Theorem 7, the plane $\mathscr{A}(\Sigma')$ admits a completely regular line oval \mathscr{O}' , such that $B(\mathscr{O}')$ is the set of singular vectors of the quadratic form $Q' = \operatorname{Tr} \circ Q$ which polarises to f'. Regard the line oval \mathscr{O}' as a line oval \mathscr{O} of $\mathscr{A}(\Sigma)$. Consequently, the points which are on the lines of \mathscr{O} are the vectors $(\mathbf{x}, \mathbf{y}) \in \mathbb{F}_q^n \times \mathbb{F}_q^n$ such that

$$\operatorname{Tr}(Q(\mathbf{x}, \mathbf{y})) = \operatorname{Tr}(\mathbf{x}^{\top}\mathbf{y}) = 0.$$

The above equation represents the set of points $B(\mathcal{O})$.

Let \mathcal{M} be the spread-set associated to Σ and \mathcal{B} . Then

$$\Sigma = \{ \boldsymbol{x} = \boldsymbol{0} \} \cup \{ \boldsymbol{y} = M\boldsymbol{x} \, | \, M \in \mathcal{M} \},\$$

the matrices of \mathcal{M} are symmetric and the line oval \mathcal{O} is represented as

$$\mathcal{O} = \{ \boldsymbol{x} = \boldsymbol{0} \} \cup \{ \boldsymbol{y} = M\boldsymbol{x} + \boldsymbol{x}_M \, | \, M \in \mathcal{M} \},\$$

where the vector x_M is determined by the condition

$$\operatorname{Tr}[Q(\boldsymbol{x}, M\boldsymbol{x} + \boldsymbol{x}_M)] = \operatorname{Tr}[\boldsymbol{x}^\top M \boldsymbol{x} + \boldsymbol{x}^\top \boldsymbol{x}_M] = 0 \quad \text{for all } \boldsymbol{x} \in \mathbb{F}_q^n.$$

If $\mathbf{x} = (x_1, \dots, x_n)^{\top}$, $\mathbf{x}_M = (\alpha_1, \dots, \alpha_n)^{\top}$ and the symmetric matrix M has entries a_{ij} , $i, j = 1, \dots, n$, a calculation proves that

$$\operatorname{Tr}\left[\sum_{i=1}^{n} (a_{ii}x_i^2 + \alpha_i x_i)\right] = 0, \quad \text{for all } x_i \in \mathbb{F}_q.$$

Hence $\alpha_i = a_{ii}^{2^{d-1}}$, i = 1, ..., n. We use the symbol \sqrt{a} to denote $a^{2^{d-1}}$ and reserve now the symbol \mathbf{x}_M to denote the vector $(\sqrt{a_{11}}, ..., \sqrt{a_{nn}})^{\top}$, where $(a_{11}, ..., a_{nn})$ is the main diagonal of the matrix M.

With a similar construction as that in the proof of Theorem 6, we can prove that the line oval \mathcal{O} is completely regular writing explicitly its regular triples.

Denote by (∞) and (M), $M \in \mathcal{M}$, the points on the line at infinity of $\mathscr{A}(\Sigma)$, which correspond to the subspaces x = 0 and y = Mx, respectively.

Antonio Maschietti

Theorem 8. The triple $\{y = Mx + r_1, y = Mx + r_2, y = Mx + r_3\}$ is (M)-regular if and only if $\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3 = \mathbf{x}_M$, where $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$ are distinct vectors of $\mathbb{F}_q^n \setminus \{\mathbf{x}_M\}$. Also, the triple $\{\mathbf{x} = \mathbf{r}_1, \mathbf{x} = \mathbf{r}_2, \mathbf{x} = \mathbf{r}_3\}$ is (∞)-regular if and only if $\mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_3 = \mathbf{0}$, where $\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3$ are distinct vectors of $\mathbb{F}_a^n \setminus \{\mathbf{0}\}$.

Proof. The proof is essentially similar to that in the proof of Theorem 6. For the sake of completeness, we repeat it.

Consider the intersection between the line y = Nx + h and the lines of the first triple, where $N \neq M$. We find the vectors

$$v_k = ((N+M)^{-1}(r_k + h), M(N+M)^{-1}(r_k + h) + r_k), \quad k = 1, 2, 3.$$

Assume $r_1 + r_2 + r_3 = x_M$. Then

$$Tr[Q(v_1) + Q(v_2) + Q(v_3)]$$

= $Tr[\mathbf{h}^{\top}(N+M)^{-1}M(N+M)^{-1}\mathbf{h} + \mathbf{h}^{\top}(N+M)^{-1}\mathbf{x}_M$
+ $\mathbf{x}_M^{\top}(N+M)^{-1}M(N+M)^{-1}\mathbf{x}_M + \mathbf{x}_M^{\top}(N+M)^{-1}\mathbf{x}_M].$

Since $\operatorname{Tr}[\mathbf{x}^{\top}M\mathbf{x} + \mathbf{x}^{\top}\mathbf{x}_{M}] = 0$ for all $\mathbf{x} \in \mathbb{F}_{q}^{n}$, putting in the above equation $(N+M)^{-1}\mathbf{h} = \mathbf{x}$ and $(N+M)^{-1}\mathbf{x}_{M} = \mathbf{y}$, we get

$$\begin{aligned} &\operatorname{Tr}[\mathcal{Q}(\boldsymbol{v}_1) + \mathcal{Q}(\boldsymbol{v}_2) + \mathcal{Q}(\boldsymbol{v}_3)] \\ &= \operatorname{Tr}(\boldsymbol{x}^\top \boldsymbol{M} \boldsymbol{x} + \boldsymbol{x}^\top \boldsymbol{x}_M) + \operatorname{Tr}(\boldsymbol{y}^\top \boldsymbol{M} \boldsymbol{y} + \boldsymbol{y}^\top \boldsymbol{x}_M) = 0. \end{aligned}$$

Consequently, as the trace map is additive, if two of the vectors v_k , k = 1, 2, 3, are not in $B(\mathcal{O})$ then the third is in $B(\mathcal{O})$.

To prove the only if part of the theorem it suffices to note that the number of (M)regular triples is $(q^n - 1)(q^n - 2)/6$, which is also the number of triples $\{r_1, r_2, r_3\}$, $\mathbf{r}_i \in \mathbb{F}_q^n \setminus \{\mathbf{x}_M\}$, whose sum is \mathbf{x}_M .

The other case is similar.

Examples. 1. The desarguesian plane AG(2, q). Let f be the non-degenerate alternating bilinear form

$$f((x, y), (x', y')) = xy' + yx', \quad x, y, x', y' \in \mathbb{F}_q$$

with associated quadratic form Q((x, y)) = xy. The symplectic spread is

$$\Sigma = \{x = 0\} \cup \{y = mx \mid x \in \mathbb{F}_q\}$$

and a completely regular line oval is

$$\mathcal{O} = \{x = 0\} \cup \{y = mx + \sqrt{m} \,|\, m \in \mathbb{F}_q\}.$$

Since $m \mapsto m^2$ is an automorphism of \mathbb{F}_q , letting $k^2 = m$, we can write

$$\mathcal{O} = \{x = 0\} \cup \{y = k^2 x + k \mid k \in \mathbb{F}_q\}.$$

 \mathcal{O} is a line conic.

2. The Lüneburg plane of order q^2 , $q = 2^{2k+1}$, see [6] and [8]. Let σ be the automorphism of \mathbb{F}_q defined by $a \mapsto a^{2^{k+1}}$. Then $\sigma^2 = 2$ and $\sigma + 1$ and $\sigma + 2$ are automorphisms of the cyclic group \mathbb{F}_q^* . Using the standard alternating bilinear form, define the symplectic spread

$$\Sigma = \{ \boldsymbol{x} = \boldsymbol{0} \} \cup \{ \boldsymbol{y} = M_{a,b} \boldsymbol{x} \, | \, a, b \in \mathbb{F}_q \}$$

where $x, y \in \mathbb{F}_q^2$ and

$$M_{a,b} = egin{pmatrix} a & a^{\sigma^{-1}} + b^{1+\sigma^{-1}} \ a^{\sigma^{-1}} + b^{1+\sigma^{-1}} & b \end{pmatrix}.$$

A completely regular line oval is

$$\mathcal{O} = \{ \boldsymbol{x} = \boldsymbol{0} \} \cup \{ \boldsymbol{y} = M_{a,b} \boldsymbol{x} + (\sqrt{a}, \sqrt{b})^\top \mid a, b \in \mathbb{F}_q \}.$$

4 Completely regular line ovals

This last section is devoted to the proof that if \mathcal{O} is a completely regular line oval in a translation plane of even order $q = 2^d$, then $\mathcal{D}(\mathcal{O}) \cong \mathcal{S}^1(2d)$. We will need some known results about *P*-regular line ovals (see Definition 2 in the Introduction). Notation is as in Section 2.

Let Π_q be a projective plane of even order q, $\mathscr{A}_q = \Pi_q^n$ the affine plane deduced from Π_q by deleting the line n and \mathscr{L} its set of affine lines. Let \mathscr{O} be a line oval with nucleus n. For every line $\ell \in \mathscr{L} \setminus \mathscr{O}$, let L be the point $\ell \cap n$ and define

$$\mathscr{S}_{\ell} = \{m \in \mathscr{L} \setminus \mathcal{O} \mid m \neq \ell \text{ and } \ell \cap m \in B(\mathcal{O})\} \cup (\mathscr{F}_{L} \setminus (\mathcal{O} \cap \mathscr{F}_{L})).$$

Note that $\ell \in \mathcal{G}_{\ell}$.

Result 1. The incidence structure $\mathscr{H}(\mathcal{O})$ whose set of points is $\mathscr{L}\backslash\mathcal{O}$ and whose blocks are the subsets $\mathscr{S}_{\ell}, \ell \in \mathscr{L}\backslash\mathcal{O}$, is a Hadamard symmetric design with parameters

$$v = q^2 - 1, \quad k = \frac{q^2}{2} - 1, \quad \lambda = \frac{q^2}{4} - 1,$$

admitting the null polarity $\ell \mapsto \mathcal{G}_{\ell}$.

The proof is straightforward.

Suppose now that the order of the plane is greater than or equal to 8. Let P be any point on n and o the unique line of $\mathcal{O} \cap \mathcal{F}_P$. From now on we assume that \mathcal{O} is a *P*-regular line oval.

Result 2. $\mathscr{F}_{P}^{*} = \mathscr{F}_{P} \setminus \{n\}$ is a d-dimensional vector space over GF(2). Such a structure is determined as follows. Let $x, y \in \mathscr{F}_{P}^{*}$ with $x \neq y$. Then define:

$$x + x = o$$
, $x + o = o + x = x$, $x + y = z$,

where z is the third line of \mathscr{F}_{P}^{*} such that $\{x, y, z\}$ is P-regular.

The dual proof is in [9], Theorem 3, where associativity of addition is proved. Note that $|\mathscr{F}_{P}^{*}| = q$ and that the number of *P*-regular triples equals the number of 2-dimensional subspaces of \mathscr{F}_{p}^{*} . This number is (q-1)(q-2)/6.

The hyperplanes of \mathscr{F}_P^* , which are its additive subgroups of order q/2, can be recovered from the sets \mathscr{S}_{ℓ} .

Lemma 4. For every affine line $\ell \notin \mathcal{O} \cup \mathcal{F}_P$, $\mathcal{S}_\ell \cap \mathcal{F}_P$ is the set of points of a hyperplane of \mathscr{F}_{P}^{*} .

Proof. As $|\ell \cap B(\mathcal{O})| = q/2$, so $|\mathcal{S}_{\ell} \cap \mathcal{F}_{\ell}| = q/2$. Therefore it suffices to prove that $\mathscr{S}_{\ell} \cap \mathscr{F}_{P}$ is a subgroup of \mathscr{F}_{P}^{*} . Now if $x, y \in \mathscr{S}_{\ell} \cap \mathscr{F}_{P}$, then also z = x + y is in $\mathscr{S}_{\ell} \cap \mathscr{F}_{P}$, since $\{x, y, z\}$ is a *P*-regular triple. \square

It follows that for every $\ell, m \in \mathscr{L} \setminus (\mathcal{O} \cup \mathscr{F}_P)$ with $\ell \neq m$,

$$|\mathscr{S}_{\ell} \cap \mathscr{S}_m \cap \mathscr{F}_P| = \begin{cases} \frac{q}{2} & \text{if } \mathscr{S}_{\ell} \cap \mathscr{F}_P = \mathscr{S}_m \cap \mathscr{F}_P \\ \frac{q}{4} & \text{otherwise.} \end{cases}$$

Lemma 5. Let $\ell \in \mathcal{L} \setminus (\mathcal{O} \cup \mathscr{F}_P)$. Then on each point R of ℓ with $R \neq \ell \cap o$ there is exactly one line $m \neq \ell$ such that $\mathscr{G}_{\ell} \cap \mathscr{F}_{P} = \mathscr{G}_{m} \cap \mathscr{F}_{P}$.

Proof. Let $\mathscr{F}_{R}^{0} = \mathscr{F}_{R} \setminus \{n, PR, \mathcal{O} \cap \mathscr{F}_{R}\}$. Note that $|\mathscr{F}_{R}^{0}| = q - 1$ if $R \notin B(\mathcal{O})$, while $|\mathscr{F}_{R}^{0}| = q - 3$ if $R \in B(\mathcal{O})$. Let $H_{\ell,r} = |\mathscr{G}_{\ell} \cap \mathscr{G}_{r} \cap \mathscr{F}_{P}|, r \in \mathscr{F}_{R}^{0}$. Then

$$\sum_{r \in \mathscr{F}_R^0} H_{\ell,r} = \begin{cases} \frac{q^2}{4} & \text{if } R \notin B(\mathcal{O}) \\ \frac{q^2}{4} + 2q - 5\frac{q}{2} & \text{if } R \in B(\mathcal{O}). \end{cases}$$
(*)

Relation (*) is obtained counting in two different ways the pairs $(z,r) \in$

 $(\mathscr{S}_{\ell} \cap \mathscr{F}_{P}) \times \mathscr{F}_{R}^{0} \text{ such that } z \cap r \in B(\mathscr{O}).$ Let k be the number of lines $r \in \mathscr{F}_{R}^{0}$ such that $\mathscr{S}_{\ell} \cap \mathscr{F}_{P} = \mathscr{S}_{r} \cap \mathscr{F}_{P}.$ If $R \notin B(\mathscr{O}),$ from (*)

Symplectic translation planes and line ovals

$$\sum_{r \in \mathscr{F}_{R}^{0}} H_{\ell,r} = k \frac{q}{2} + (q-1-k) \frac{q}{4} = \frac{q^{2}}{4}$$

So k = 1. If $R \in B(\mathcal{O})$, again from (*) we get

$$\sum_{r \in \mathscr{F}_R^0} H_{\ell,r} = k \frac{q}{2} + (q-3-k) \frac{q}{4} = \frac{q^2}{4} + 2q - 5\frac{q}{2}.$$

Hence k = 1.

Using Lemma 5 it is easy to prove that the equivalence relation on $\mathscr{L} \setminus (\mathscr{F}_P \cup \mathscr{O})$

$$\ell \sim m$$
 if $\mathscr{S}_{\ell} \cap \mathscr{F}_{P} = \mathscr{S}_{m} \cap \mathscr{F}_{P}$

has q - 1 classes, each class has q elements and that the lines of a class plus the line o constitute a line oval. Therefore the *P*-regular line oval \mathcal{O} determines q - 1 other line ovals \mathcal{O}_i , $i = 1, \ldots, q - 1$, all with nucleus n, such that

- 1. $\mathcal{O} \cap \mathcal{O}_i = \mathcal{O} \cap \mathscr{F}_P = \{o\}, i = 1, \dots, q-1;$
- 2. $\ell, m \in \mathcal{O}_i \setminus \{o\}$ if and only if $\mathscr{S}_\ell \cap \mathscr{F}_P = \mathscr{S}_m \cap \mathscr{F}_P$.

Definition 5. The set of line ovals $\{\mathcal{O}, \mathcal{O}_i\}_{i=1,...,q-1}$, as above determined, is called the *P*-bundle of \mathcal{A}_q .

Note that the q-1 hyperplanes of \mathscr{F}_P^* are determined by the sets $\mathscr{G}_{\ell_i} \cap \mathscr{F}_P$, where $\ell_i \in \mathcal{O}_i, i = 1, ..., q-1$.

A property which characterizes the line ovals \mathcal{O}_i , i = 1, ..., q - 1, is given by the following lemma.

Lemma 6. Let \mathcal{O}' be a line oval such that $\mathcal{O}' \cap \mathcal{O} = \mathcal{O} \cap \mathscr{F}_P = \{o\}$. Then \mathcal{O}' is one of the line ovals \mathcal{O}_i if and only if $x \cap B(\mathcal{O}) = x \cap B(\mathcal{O}')$ for every line $x \in \mathscr{F}_P^* \setminus \{o\}$ such that $x \cap B(\mathcal{O}) \cap B(\mathcal{O}') \neq \emptyset$.

Proof. Let $\mathcal{O}' = \mathcal{O}_i$, some *i*. If $x \in \mathscr{F}_P^* \setminus \{o\}$ and $R \in x \cap B(\mathcal{O}) \cap B(\mathcal{O}_i)$, then there is a line ℓ of \mathcal{O}_i such that $\ell \cap x = R$. Therefore $x \in \mathscr{S}_\ell \cap \mathscr{F}_P$. Because of property 2 above, $x \in \mathscr{S}_m \cap \mathscr{F}_P$ for every $m \in \mathcal{O}_i$. Using the null polarity of the 2-design $\mathscr{H}(\mathcal{O}), m \in \mathscr{S}_x$ for every $m \in \mathcal{O}_i$. Therefore $x \cap B(\mathcal{O}_i) \subseteq x \cap B(\mathcal{O})$. As $|x \cap B(\mathcal{O}_i)| = |x \cap B(\mathcal{O})|$, so $x \cap B(\mathcal{O}) = x \cap B(\mathcal{O}_i)$.

To prove the converse, it suffices to show that if ℓ and m are in \mathcal{O}' then $\mathscr{G}_{\ell} \cap \mathscr{F}_{P} = \mathscr{G}_{m} \cap \mathscr{F}_{P}$. By way of contradiction, let $\ell \cap x \in B(\mathcal{O})$, but $m \cap x \notin B(\mathcal{O})$, some $x \in \mathscr{F}_{P}^{*} \setminus \{o\}$. Since $\ell \cap x \in B(\mathcal{O}) \cap B(\mathcal{O}')$, then $x \cap B(\mathcal{O}) = x \cap B(\mathcal{O}')$. Therefore $m \cap x \notin B(\mathcal{O}')$, a contradiction.

From the above lemma we deduce that the line oval \mathcal{O}_i , i = 1, ..., q - 1, is *P*-regular and has the same *P*-regular triples as \mathcal{O} .

139

Proof. Let $\{x, y, z\}$ be a *P*-regular triple for \mathcal{O} . Let ℓ be a line such that $\ell \cap x \notin B(\mathcal{O}_i)$ and $\ell \cap y \notin B(\mathcal{O}_i)$. We claim that $\ell \cap z \in B(\mathcal{O}_i)$. We treat the cases $\ell \cap x \in B(\mathcal{O})$ and $\ell \cap y \in B(\mathcal{O})$, the others being similar.

Since $\{x, y, z\}$ is *P*-regular for \emptyset and $\ell \cap x \in B(\emptyset)$, $\ell \cap y \in B(\emptyset)$, then $\ell \cap z \in B(\emptyset)$ and $\mathscr{C}(\mathscr{S}_x) \cap \mathscr{C}(\mathscr{S}_y) \subset \mathscr{S}_z$ Because of Lemma 6, from $\ell \cap x \notin B(\emptyset_i)$ and $\ell \cap y \notin B(\emptyset_i)$

$$\mathcal{O}_i \subset \mathscr{C}(\mathscr{S}_x), \quad \mathcal{O}_i \subset \mathscr{C}(\mathscr{S}_v)$$

follows. Therefore $\mathcal{O}_i \subset \mathscr{C}(\mathscr{S}_x) \cap \mathscr{C}(\mathscr{S}_y) \subset \mathscr{S}_z$. Thus $m \cap z \in B(\mathcal{O})$; whence $\ell \cap z \in B(\mathcal{O}_i)$.

Let now $\overline{\emptyset}$ be a line oval such that $\overline{\emptyset} \cap \emptyset = \emptyset \cap \mathscr{F}_P = \{o\}$. If $\overline{\emptyset}$ is *P*-regular and has the same *P*-regular triples as \emptyset , then $\overline{\emptyset}$ is one of the \emptyset_i , $i = 1, \ldots, q - 1$. To prove the assertion, first note that \emptyset and $\overline{\emptyset}$ induce on \mathscr{F}_P^* the same additive structure. Let $x \in \mathscr{F}_P^*$. Denote by $I_1, \ldots, I_{q/2}$ the q/2 hyperplanes of \mathscr{F}_P^* which contain *x*. As each I_j can be realized as $\mathscr{S}_{\ell_j} \cap \mathscr{F}_P$, where ℓ_j is any affine line of \mathscr{F}_Q with $Q \neq P$, so $\ell_j \cap x \in B(\emptyset)$ if and only if $\ell_j \cap x \in B(\overline{\emptyset})$. Therefore $x \cap B(\emptyset) = x \cap B(\overline{\emptyset})$. Because of Lemma 6, $\overline{\emptyset}$ is one of the line ovals \emptyset_i , $i = 1, \ldots, q - 1$.

We have proved

Result 3. (see also [10], Theorem 1 and Lemma 3) Let \mathcal{O} be a *P*-regular line oval. Then there exist q - 1 other line ovals \mathcal{O}_i , i = 1, ..., q - 1, all with nucleus *n*, such that

1.
$$\mathcal{O} \cap \mathcal{O}_i = \mathcal{O} \cap \mathscr{F}_P = \{o\}, i = 1, \dots, q-1;$$

2. $\ell, m \in \mathcal{O}_i \setminus \{o\}$ if and only if $\mathscr{S}_{\ell} \cap \mathscr{F}_P = \mathscr{S}_m \cap \mathscr{F}_P$.

Moreover, each line oval \mathcal{O}_i , i = 1, ..., q - 1, is *P*-regular, has the same *P*-regular triples as \mathcal{O} and any other *P*-regular line oval having the same *P*-regular triples as \mathcal{O} is one of the \mathcal{O}_i , i = 1, ..., q - 1.

We apply now Result 3 to the case where $\mathscr{A}_q = \prod_q^n$ is a translation plane of even order $q = 2^d$ with translation group T and \mathscr{O} is a completely regular line oval with respect to the line at infinity n. If P is a point on n, denote by T_P the group of all translations with centre P.

Lemma 7. Let $g \in T$. Then \mathcal{O}^g is a completely regular line oval and if $g \in T_P$ then \mathcal{O} and \mathcal{O}^g have the same *P*-regular triples.

Proof. First of all note that \mathcal{O}^g is a line oval with nucleus *n*. Also, $B(\mathcal{O})^g = B(\mathcal{O}^g)$. For, if $R \in B(\mathcal{O})$, then there is a line *r* of \mathcal{O} such that $R \in r$. Therefore $R^g \in B(\mathcal{O}^g)$, and so $B(\mathcal{O})^g \subseteq B(\mathcal{O}^g)$. Since $|B(\mathcal{O})^g| = |B(\mathcal{O}^g)|$, then $B(\mathcal{O})^g = B(\mathcal{O}^g)$ follows.

Let $\{x, y, z\}$ be any *P*-regular triple for \mathcal{O} , where *P* is any point on *n*. We prove that $\{x^g, y^g, z^g\}$ is a *P*-regular triple for \mathcal{O}^g . Let ℓ be any line not on *P* and assume that $\ell \cap x^g$ and $\ell \cap y^g$ are not in $B(\mathcal{O}^g)$. If $\ell \cap z^g \notin B(\mathcal{O}^g)$, then the points $\ell^g \cap x$, $\ell^g \cap y, \ell^g \cap z$ are not in $B(\mathcal{O})$, which is absurd, as $\{x, y, z\}$ is a *P*-regular triple for \mathcal{O} . In particular, if $g \in T_P$, then $\{x^g, y^g, z^g\} = \{x, y, z\}$.

Because of this lemma and Result 3 above the *P*-bundle defined by \mathcal{O} is $\{\mathcal{O}^g | g \in T_P\}$. We fix the following notation:

 $\{S_0,\ldots,S_q\}$ is the set of points of *n*;

 T_i is the group of all translations with centre S_i , i = 0, 1, ..., q;

 \mathscr{F}_i is the pencil of lines thought S_i , $i = 0, 1, \ldots, q$;

 o_i is the line $\mathcal{O} \cap \mathscr{F}_i$, $i = 0, 1, \ldots, q$;

 $\mathscr{F}_i^* = \mathscr{F}_i \setminus \{o_i\}, i = 0, 1, \dots, q.$

Recall that \mathscr{F}_i^* is a *d*-dimensional vector space over GF(2) and that the S_i -bundle is $\{\mathcal{O}^g \mid g \in T_i\}$.

Lemma 8. Let $I = \{o_j, m_1, \ldots, m_{q/2-1}\}$ be any hyperplane of the vector space \mathscr{F}_j^* . Then there is a subgroup H of T_i , with $i \neq j$, of order q/2 which stabilizes I. Moreover, also the group HT_j of order $q^2/2$ stabilizes I.

Proof. Let ℓ be a line of $\mathscr{F}_i \setminus \{o_i, n\}$, such that $\mathscr{G}_\ell \cap \mathscr{F}_j = I$. Then the points $\ell \cap m_k$, $k = 1, \ldots, q/2 - 1$, are in $B(\mathcal{O})$. Let $\{\mathcal{O}, \mathcal{O}^{h_1}, \ldots, \mathcal{O}^{h_{q-1}}\}$ be the S_i -bundle, where $\{1, h_1, \ldots, h_{q-1}\} = T_i$. Each of the lines $m_k, k = 1, \ldots, q/2 - 1$, is on one of the line ovals of the S_i -bundle. It is not restrictive to assume that $m_k \in \mathcal{O}^{h_k}, k = 1, \ldots, q/2 - 1$. So let $H = \{1, h_1, \ldots, h_{q/2-1}\}$. From Lemma 6, $\ell \cap m_k \in B(\mathcal{O}) \cap B(\mathcal{O}^{h_k})$ implies $\ell \cap B(\mathcal{O}) = \ell \cap B(\mathcal{O}^{h_k})$ for every $h_k \in H$. Therefore for any h_k and h_r in H

$$(\ell \cap B(\mathcal{O}^{h_k}))^{h_r} = \ell \cap B(\mathcal{O}^{h_k h_r}) = \ell \cap B(\mathcal{O}).$$

Hence H is a subgroup of T_i which stabilizes I.

Clearly, also HT_i stabilizes I and has order $q^2/2$, as $H \cap T_i = \{1\}$.

The elementary abelian 2-group T is sharply transitive on the points of \mathcal{A}_q . Fix a point P_0 of \mathcal{A}_q . Then for any point $P \neq S_0, \ldots, S_q$ there is exactly one $g \in T$ such that $P = P_0^g$. If $P = P_0^g$ and $Q = P_0^h$, then addition of points is meaningful: $P + Q := P_0^{gh}$. In this way the set of points of \mathcal{A}_q becomes an elementary abelian 2-group G of order q^2 isomorphic to T, whose identity element is the point P_0 .

The design $\mathscr{D}(\mathcal{O})$ has been defined in Section 2.

Lemma 9. For any distinct blocks **b** and **c** of $\mathscr{D}(\mathcal{O})$, **b** \triangle **c** is a left coset of a subgroup of *G*.

Proof. First we consider the case $\boldsymbol{b} = B(\mathcal{O})$ and $\boldsymbol{c} = B(\mathcal{O}^g)$, $g \in T_S$, where *S* is one of the points S_0, S_1, \ldots, S_q and T_S is the group of all translations with centre *S*. Let $\mathcal{F}_S \cap \mathcal{O} = \{o\}$. If $\ell \in \mathcal{O}^g \setminus \{o\}$, then $\mathcal{S}_\ell \cap \mathcal{F}_S$ is a hyperplane of \mathcal{F}_S^* and $\mathcal{S}_\ell \cap \mathcal{F}_S = \mathcal{S}_m \cap \mathcal{F}_S$ for every $\ell, m \in \mathcal{O}^g \setminus \{o\}$. Let $I = \mathcal{S}_\ell \cap \mathcal{F}_S = \{o, z_1, \ldots, z_{q/2-1}\}$. The remaining affine lines of \mathcal{F}_S , say $\overline{z}_1, \ldots, \overline{z}_{q/2}$, share the following property:

Antonio Maschietti

any point on \overline{z}_i , i = 1, ..., q/2, is either in $B(\mathcal{O})$ or in $B(\mathcal{O}^g)$.

Thus $B(\mathcal{O}) \triangle B(\mathcal{O}^g)$ is the set of points on the lines $\overline{z}_1, \ldots, \overline{z}_{q/2}$. These points are $q^2/2$ in number.

Let $P_0 \in B(\mathcal{O}) \triangle B(\mathcal{O}^g)$ (P_0 is the identity element of G). Then P_0 is on one of the lines $\overline{z}_1, \ldots, \overline{z}_{q/2}$, say \overline{z}_1 . If $h \in T_S$, then P_0^h is a point on \overline{z}_1 . Therefore $P_0^h \in B(\mathcal{O}) \triangle B(\mathcal{O}^g)$ for any $h \in T_S$. By Lemma 8, let H be a subgroup of T_i , where $S_i \neq S$, of order q/2 which stabilizes I and its complement $\{\overline{z}_1, \ldots, \overline{z}_{q/2}\}$. Then HT_S stabilizes I and its complement. So $B(\mathcal{O}) \triangle B(\mathcal{O}^g)$ consists of the points $\{P_0^{h_i g_j} | h_i \in H, g_j \in T_S\}$, which is a subgroup of G of order $q^2/2$.

Next let us examine the case where $P_0 \notin B(\mathcal{O}) \triangle B(\mathcal{O}^g)$. Then P_0 is in $B(\mathcal{O}) \cap B(\mathcal{O}^g)$. So P_0 is on one of the lines $\{o, z_1, \ldots, z_{q/2-1}\}$. Using the subgroup H as determined above, we have that

$$K = \{P_0^{h_i g_j} \mid h_i \in H, g_j \in T_S\} = (B(\mathcal{O}) \cap (B(\mathcal{O}^g))) \cup (\mathscr{C}B(\mathcal{O}) \cap \mathscr{C}B(\mathcal{O}^g))$$

is a subgroup of G. Therefore if P is any point on one of the lines $\overline{z}_1, \ldots, \overline{z}_{q/2}$, then $B(\mathcal{O}) \triangle B(\mathcal{O}^g) = P + K$ is a left coset of a subgroup of G.

The general case follows from the above ones. It suffices to note that if **b** and $c = B(\mathcal{O}^h)$ are two distinct blocks of $\mathcal{D}(\mathcal{O})$, then $b = B(\mathcal{O}^g)$, where $g \in T$. Since $B(\mathcal{O}) \triangle B(\mathcal{O}^{hg})$ is a left coset of a subgroup of *G* the same holds for $B(\mathcal{O}^g) \triangle B(\mathcal{O}^h)$. \Box

Theorem 9. Let \mathscr{A}_q be a translation plane of even order $q = 2^d$ with $d \ge 3$ and \mathcal{O} a completely regular line oval. Then $\mathscr{D}(\mathcal{O}) \cong \mathscr{S}^1(2d)$.

Proof. The proof follows from the above lemma and Theorem 4.

Theorems 9 and 6 prove Theorem 2 stated in the Introduction.

Acknowledgments. I am indebted to W. M. Kantor who focused my attention on his paper [3]. Without his suggestion and a useful correspondence this paper would not have been written.

References

- [1] J. W. P. Hirschfeld, Ovals in desarguesian planes of even order. Ann. Mat. Pura Appl. (4) 102 (1975), 79–89. MR 50 #11013 Zbl 0293.50015
- J. W. P. Hirschfeld, *Projective geometries over finite fields*. Oxford Univ. Press 1979. MR 81h:51007 Zbl 0418.51002
- W. M. Kantor, Symplectic groups, symmetric designs, and line ovals. J. Algebra 33 (1975), 43–58. MR 51 #189 Zbl 0298.05016
- [4] W. M. Kantor, Spreads, translation planes and Kerdock sets. I. SIAM J. Algebraic Discrete Methods 3 (1982), 151–165. MR 83m:51013a Zbl 0493.51008
- [5] W. M. Kantor, Spreads, translation planes and Kerdock sets. II. SIAM J. Algebraic Discrete Methods 3 (1982), 308–318. MR 83m:51013b Zbl 0535.51003

- [6] G. Korchmáros, Le ovali di linea del piano di Lüneburg d'ordine 2^{2r} che possono venir mutate in sé da un gruppo di collineazioni isomorfo al gruppo semplice Sz(2^r) di Suzuki. *Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia* (8) 15 (1979), 293–315. Zbl 0445.51003
- [7] G. Korchmáros, Old and new results on ovals in finite projective planes. In: Surveys in combinatorics, 1991 (Guildford, 1991), 41–72, Cambridge Univ. Press 1991.
 MR 93b:51014 Zbl 0748.51012
- [8] H. Lüneburg, Translation planes. Springer 1980. MR 83h:51008 Zbl 0446.51003
- [9] A. Maschietti, Regular triples with respect to a hyperoval. Ars Combin. 39 (1995), 75–88. MR 96m:51008 Zbl 0828.51003
- [10] A. Maschietti, A characterization of translation hyperovals. *European J. Combin.* 18 (1997), 893–899. MR 98j:51014 Zbl 0889.51011
- [11] A. Maschietti, Difference sets and hyperovals. Des. Codes Cryptogr. 14 (1998), 89–98.
 MR 99j:05033 Zb1 0887.05010
- J. A. Thas, Construction of maximal arcs and dual ovals in translation planes. *European J. Combin.* 1 (1980), 189–192. MR 82a:05031 Zbl 0449.51011

Received 15 October, 2001; revised 4 February, 2002

 A. Maschietti, Dipartimento di Matematica "G. Castelnuovo", Universitá "La Sapienza", P.le A. Moro, I-00182 Roma, Italy Email: maschiet@mat.uniroma1.it