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Symplectic translation planes and line ovals

Antonio Maschietti

(Communicated by G. Korchméros)

Abstract. A symplectic spread of a 2n-dimensional vector space V" over GF(q) is a set of ¢” + 1
totally isotropic n-subspaces inducing a partition of the points of the underlying projective
space. The corresponding translation plane is called symplectic. We prove that a translation
plane of even order is symplectic if and only if it admits a completely regular line oval. Also,
a geometric characterization of completely regular line ovals, related to certain symmetric
designs &’!(2d), is given. These results give a complete solution to a problem set by W. M.
Kantor in apparently different situations.
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1 Introduction

Let I, be a finite projective plane of order g. An oval is a set of ¢ + 1 points, no three
of which are collinear. Dually, a line oval is a set of ¢ + 1 lines no three of which are
concurrent. Any line of the plane meets the oval (0 at either 0, 1 or 2 points and is
called exterior, tangent or secant, respectively. For an account on ovals the reader is
referred to [1], [2] and [7]. If the the order of the plane is even all the tangent lines
to the oval ¢ concur at the same point N, called the nucleus (or the knot) of ©. The
set O U{N} becomes a hyperoval, that is a set of ¢ + 2 points, no three of which are
collinear. A regular hyperoval is a conic plus its nucleus in a desarguesian plane. If ¢
is a line oval, then there is exactly one line n such that on each of its points there is
only one line of @. This line # is called the (dual) nucleus of €. The (g + 2)-set O U {n}
is a line hyperoval or dual hyperoval.

Let <7, be a translation plane of even order ¢ = 2¢ and ¢ a line oval whose nucleus
is the line at infinity. Let 7" be the translation group of .2, and A its set of points.
Identifying the elements of 4 with those of T" and using addition as the operation on
A, define

B(0) = {Pe A|Pison aline of O}.

In [3], Theorem 7, it is proved that B(() is a difference set in the abelian group A.
The corresponding symmetric design Z(() has parameters
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This design has the same parameters as certain designs %! (2d), see [3] and also Sec-
tion 2. In two cases Kantor proved, see [3], Theorems 8 and 9, that 2(0) is iso-
morphic to .#!(2d), namely

1. o/, is desarguesian and ¢ is a line conic (i.e. ¢ becomes a conic in the dual of the
projectivization of .o7,);

2. o, is the Liineburg plane of order g, where ¢ = 224 with d > 1 odd and O is a
suitable line oval.

Such a line oval in the Liineburg plane has the property of being stabilised by a col-
lineation group isomorphic to the Suzuki group Sz(29) acting 2-transitively on its
lines. Its existence was first proved in [3] by methods related to the symmetric design
1(2d). There is also a direct construction, based on analytical methods, see [6].

Quite naturally W. M. Kantor raised the problem of finding out which translation
planes were related to .%’!(2d) and which geometric conditions on a line oval of a
translation plane of order 2¢ were necessary and sufficient in order that Z(() be
isomorphic to ¥ 1(2d).

The aim of this paper is to give a complete solution to the above problem. To
get such a solution results about P-regular line ovals are used. In [9] and [10] ovals
admitting a strongly regular tangent line are investigated. Here we need analogous
results in a dual setting. So, we recall some basic definitions.

Definition 1. Let ¢ be an oval with nucleus N in I1,, where g > 8 is even. A tangent line
s to O is strongly regular if for every pair of distinct points X, Y € s\((sNO)U{N})
there is a third point Z € s\((sN @) U{N?}) such that for every point P # N of II, at
least one of the lines PX, PY, PZ is a secant line. Each non-ordered triple of points
with the above property is called s-regular.

The dual definition is as follows. Let @ be a line oval of I, ¢ even, and # its
nucleus. Denote by I1j = .o/, the affine plane deduced by I1, by deleting the line n
and by 4 the set of points of .o7,. As above, set

B(0) = {Pe A|Pison aline of O}.
Let Zp denote the pencil of lines on P, where P is a point of I,,.

Definition 2. Let @ be a line oval with nucleus » and P a point on n. O is called P-
regular if for any pair of distinct affine lines x, y € Zp\(Zp N O) there is a third affine
line z € Zp\(ZpN O) such that for every affine line / not on P at least one of the
points ZNx, /Ny or /N z belongs to B(¥). Each non-ordered triple of lines sharing
the above property is called P-regular.
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In [9], Theorem 3, it is proved that if the oval ¢ has a strongly regular tangent line,
then the order ¢ of the plane is a power of 2. By duality the same result holds in the
case of a P-regular line oval.

Known examples of ovals with a strongly regular tangent line are the translation
ovals, see [9] and [10]. By duality we obtain examples of P-regular line ovals.

Non-degenerate conics are characterized by the following result, see [10], Corol-
lary 1.

Theorem 1. In PG(2,29), where d = 3, an oval O is a non-degenerate conic if and only
if O admits two distinct strongly regular tangent lines.

This shows that a non-degenerate conic admits ¢ + 1 strongly regular tangent lines.

Definition 3. An oval @ with nucleus N is called completely N-regular if every line on
N € 0 is strongly regular.

We need the dual definition.

Definition 4. A line oval ¢ is called completely regular with respect to its nucleus n if
O is P-regular for every point P on n.

Our main results are summarized in the following theorems.

Theorem 2. Let o7, be a translation plane of even order q = 24 where d =3, and O a
line oval whose nucleus is the line at infinity n. Then %(0) is isomorphic to &' (2d) if
and only if O is completely regular with respect to the line n.

In a 2n-dimensional vector space over GF(g), equipped with a non-singular alter-
nating bilinear form, a symplectic spread is a family of ¢” + 1 totally isotropic n-
subspaces which induces a partition of the points of the underlying projective space.

Theorem 3. Let <7, be a translation plane of even order q = 2%, where d > 3. Then </,
admits a completely regular line oval with respect to the line at infinity if and only if </,
is defined by a symplectic spread of a 2d-dimensional vector space over GF(2).

In particular, the above theorem states that any symplectic translation plane of even
order admits a line oval, a well known result, see [12]. There are many examples of
symplectic translation planes, see [4] and [5]. So there are many examples of com-
pletely regular line ovals. Note that the above theorem answers the question of find-
ing an internal criterion for a translation plane to be symplectic, see [5], page 318.

The paper is organized as follows. In Section 2 we fix some notation and introduce
the designs % () and .#!(2d). Section 3 is devoted to prove that the only translation
planes admitting a completely regular line oval are the symplectic ones. This is the
content of Theorem 3 above. Also, a method to determine explicitly the regular triples
of a completely regular line oval is described.
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Finally in Section 4 we prove that, for a completely regular line oval ¢ in a trans-
lation plane, Z(0) =~ #!(2d) holds. This result and those of Section 3 will provide a
proof of Theorem 2.

2 Preliminary results

We will use fairly standard notation. In particular, dealing with planes or symmetric
designs, points will be denoted by P, Q,..., X, Y, Z lines by /,m,...,r, s ..., X, y,z
and blocks by a, b, . .., x. The symbol Zp will denote the pencil of lines of a projective
plane through the point P. Sometimes the line through two distinct points P and Q
will be denoted by PQ.

If T is a finite set, then |7'| denotes the size of T, T the complement of 7" and
T\S the set of elements of 7 not in S. Finally, if 4 : 4 — B is a map between the sets
A and B, then P" is the image under / of the element P € A4 (in some cases also the
symbol /(P) is used).

Let II, be a projective plane of even order ¢, ¢ a line oval with nucleus n and
</, = I} the affine plane deduced from I, by deleting the line n. Let & be its set of
affine lines. Denote by B(() the set of affine points which are on the lines of ¢ and by
#B(0) its affine complement. It is easy to prove that

q(g—1)
2 b

8oy = 1D o) =

and if R € B(() then there are two lines of ¢ through R. Moreover, if / ¢ O is any
affine line then

/N B(O)| = |t NEB(0)] :%.

The following proposition is a useful criterion to decide if a set of g -+ 2 lines of 11,
is a line hyperoval.

Proposition 1. Let Q be a set of q+ 2 lines of I1,. Then Q is a line hyperoval if and
only if the number of points which are not on the lines of Q is greater than or equal to

(g —1)/2.
Proof. (See also [11], Theorem 3) Let k > 2 be the maximum number of concurrent

lines of Q and ¢, the number of points which are on s lines of Q, s =0,1,...,k. By a
standard counting argument

k
Sti=q"+q+1 (1)
s=0

k
> sty=(q+1)(g+2) (2)
s=1



Symplectic translation planes and line ovals 127

k
Y sls= 1ty = (g +2)(g+1). 3)
s=2
Subtracting Equation (3) from (2)
fh— Zk:s(s —2)t; = 0. (4)

s=3

Since 7 = g(q — 1)/2, elimination of #; from (1) and (4) gives

k
-1
t2+Z(s2—2s+1)tS<q2+q+l—%. (5)
From (3)
k
2=(q+2)(g+1) = s(s— 1)z, (6)
s=3

From (5) and (6)

k

D (2= 3s+2)1, <0.

5s=3

As s> —3s+2 > 0 for any s > 3, we infer ¢, = 0 for any s > 3. Therefore k < 2, that
is Q is a line hyperoval. The converse is trivial. OJ

For the theory of translation planes we refer to [§8]. Let <7, be a translation plane
of even order ¢ =29, where d > 3, T its translation group and ¢ a line oval with
nucleus the line at infinity n. Note that (¢ is a line oval with nucleus n for every
ge T. Also, if 09 and 0", g,h € T, are distinct line ovals, then they have exactly one
line in common.

For every g € T, let B((7) be the set of affine points which are on the lines of 7.
Denote by Z(0) the incidence structure whose points are the points of .7, and whose
blocks are the sets B(0Y), ge T.

Theorem 4. Z(0O) is a symmetric design with parameters

A\‘Q
N\-Q

Proof. (see also [3], Theorem 7 (i)) The number of points is ¢> and equals the number
of blocks. Each block contains ¢(g + 1)/2 points, which is the total number of points
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which are on the lines of a line oval. It remains to prove that any two distinct blocks
have ¢*/4 + g/2 common points. Consider any two distinct line ovals /Y and 0" Let
s be the unique line they have in common and S, the point nNs. For any line / of
the plane not in " there are ¢/2 points of B((¢") which belong to 7, one of which is
/Ns. Let £ vary on 09\{s}. Since a point on /N B((Y) not on s is also determined
by another line of (Y, we have ¢/2(q/2 — 1) common points. To these we add the ¢
points on s (excluding S,,) to obtain ¢2/4 + ¢/2 common points. O

We introduce now another symmetric design, having the same parameters as 2(0)
and investigated in [3]. So our reference is [3], with only some minor change in nota-
tion. We use only one type of orthogonal group of a 2d-dimensional vector space
over GF(2), namely O"(2d,2), which is the linear group preserving a non-degenerate
quadratic form with index d. The symplectic group of a 2d-dimensional vector space
over GF(2) will be denoted by Sp(2d, 2).

If S and T are sets of points of a design, then SA T is the symmetric difference
(SUDTIN\(SNT).

Set
-1 1 1 1
1 -1 1 1
H(2) = 1 1 -1 1

For each positive integer d, let H(2d) be the tensor product of d copies of H(2).
Rows and columns of H(2d) can be regarded as the points and blocks of a symmetric
design .#’!(2d), a point being on a block if and only if the corresponding entry is 1.
%1(2d) has parameters

0= 22(1 k= 22d71 + 2(171 )= 22(172 + 2d71.

Theorem 5. Let & be a symmetric design admitting a sharply point-transitive auto-
morphism group T. Define addition of points so that T is the set of right translations
of the group G of the points. Then the following statements are equivalent.

1. @ is isomorphic to ' (2d) for some d.
2. bAcis a left coset of a subgroup of G whenever b and ¢ are distinct blocks.

3. €(bLc) is a left coset of a subgroup of G whenever b and c are distinct blocks.
Proof. See [3], Theorem 2. O

In [3], Section 4, the full automorphism group % of #!(2d) is completely deter-
mined: it is a semidirect product of the translation group T of the 2d-dimensional
affine geometry over GF(2), AG(2d, 2), with Sp(2d, 2). Moreover, if x is a block, then
9, is isomorphic to Sp(2d,2) and is 2-transitive on x and @x. Finally, if P € x then
Gp, is O (2d,2).
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It follows that identifying the points of %! (2d) with the vectors of a 2d-dimensional
vector space V over GF(2) there exists a quadratic form Q with group O"(2d,?2)
such that x is the set of singular vectors of Q (a vector v is a singular vector of Q if
Q(v) = 0). Therefore #!(2d) can be constructed as follows.

Proposition 2. Let V be a 2d-dimensional vector space over GF(2) and Q a non-
degenerate quadratic form on V whose group is O"(2d,2). Let S(Q) be the set of sin-
gular vectors of Q. Then the points and blocks of ' (2d) are the vectors of V and the
translates S(Q) +v,ve V.

Proof. See [3], Corollary 3. [

3 Symplectic translation planes

Let V' = V(2n,q) be a 2n-dimensional vector space over IF, = GF(q). Vectors will
be denoted by v, w, ...,z subspaces by S, T, U,..., X, Y. A spread of V is a family X
of ¢" + 1 n-dimensional subspaces of V' any two of which have in common the zero
vector only. A symplectic spread of V is a spread which consists of totally isotropic
subspaces with respect to a non-degenerate alternating bilinear form f.

Let X = {So,S1,...,S,} be aspread of V" and .«/(X) the corresponding translation
plane of order ¢”, see [8]. If T is its translation group, then the points of .7 (%) are the
vectors of V' and the lines are the translates of the components of X. A translation
plane defined by a symplectic spread is said to be symplectic.

Fix two distinct component of X, say Sy and S;. Then V' = Sy @ S;. Choose bases
{v1,v2,...,v,} In Sy and {wy,wa,...,w,} in S}, so that B = {v1,..., v, W1,..., Wy}
is a basis of V. The subspaces Sy and S are identified with IF q” and V7 with ]F; X ]Fq”.
Vectors of IF are identified with n x 1 matrices, represented by symbols like x, y, ...

With respect to the basis 4, the spread X determines a set .# of n X n matrices over
IF, such that (see [8])

l. |#|=q"and O € 4
2. if A,Be .# and A # B then A — B is non-singular
3. .\{O} acts sharply transitively on IF,\{0}.

The set ./ is called the spread-set associated with . With respect to .# and the basis
B

S={x=0}U{y=Mx|Me W}

Note that we write y = Mx to denote the subspace {(x, Mx)|x e IF]'}.

From now on we assume that ¢ is a power of 2, ¢ = 2%. Let £ = {So, Sty Sgn}
be a symplectic spread with respect to a non-degenerate alternating bilinear form f.
Then the bases in Sy and S can be chosen so that f(v;,w;) =d;, where d; is the
symbol of Kronecker and i, j = 1,...,n. Such bases are called dual. Therefore in the

basis Z = {vi,..., vy, Wi,...,w,} of V, f is represented by the matrix
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o I
I O
where O and I denote the n x n zero and identity matrices. Then

f((x, ), (X ) =xTy +y'x,

where x,x’, y, y" are vectors of IF}, the symbol T denotes transposition and the prod-
uct is the ordinary product between matrices. A quadratic form Q which polarises to

f (i.e. Q(v+w) =0() + O(w) +f(v,w) for v,we V) is
O((x, ) =x'y.

With respect to this basis the associated spread-set .# consists of symmetric matrices.
For, if y = Mx is a component of X, then

f(<x7 Mx)> (xla Mx,)) =0

for every x,x’' € ]F; ifand only if M = M.

The vector space IF) x IF)' can be viewed as a 2nd-dimensional vector space
over IF,. Let Tr: IF, — IF, be the trace map: Tr(x) = Zli _01 x2'. Then the bilinear
map f'=Trof is a non-degenerate alternating bilinear form on IFQ”'{ X IF;"I and
Q' = Tro Q is a quadratic form which polarises to f”’. The symplectic spread X gives
rises to a symplectic spread X’ of ]F;”J X ]F;”], such that the plane .o7(X) is identical to
the plane .o/ (X'), see also [5].

The definition of completely regular line oval is in the Introduction, Definition 4.

Theorem 6. Let </, be a translation plane of even order q = 2% with d > 3 and O a line
oval with nucleus the line at infinity such that 2(0) = #'(2d). Then

1. 7, is a symplectic translation plane

2. O is a completely regular line oval.

Proof. Let ¥ ={S),S1,...,S;} be a spread of a 2d-dimensional vector space
V' over GF(2) which defines ./,, We can assume that the lines of @ are
{80, 81,8 4+ v2,...,S,+ v,}, where va,...,v, are, in some ordering, the non-zero
vectors of Sy. As Z(0) = #1(2d), so, because of Proposition 2, there is a quadratic
form on ¥V with group O"(2d,2) such that B(0) is the set of singular vectors of Q.
Let f be the non-degenerate alternating bilinear on ¥ form polarised by Q, that is

flo,w)=0@w+w)+ Q)+ Q(w) forv,weV.

Let S(Q) = B(O) be the set of singular vectors of Q. Then for every v e S(Q) the
quadratic form Q, defined by Q,(w) = Q(v+ w), w € V, also polarises to f and its
set of singular vectors is S(Q) 4+ v. As S(Q) = B(0), so S(Q,) = S(Q) + v = B(0%),
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where 7, is the translation w — w + v. Therefore the subspaces S;, i =0,1,...,q, are
totally isotropic with respect to f. For Sy and S| are totally singular, since they are
contained in S(Q), and S; is contained in S(Q,,) = S(Q) + v;, i = 2,...,q. The spread
X is then symplectic and .<Z, is a symplectic translation plane. This proves item 1 of
the theorem.

To prove that ¢ is completely regular we make use of coordinates to write explicitly
its regular triples. Referring back to the construction at the beginning of the section,
write V' = Sy @ S| and choose dual bases {vy,...,vs} in Sp and {wy,...,ws} in S| so
that, in the basis & = {vi,..., 04, W1,..., Wa},

S((x, ), (" p0) = xTy +p'x,
where x, x’, y, y’ are vectors of ]Ff . Thus the quadratic form Q is
O(x,y) =x'y
and the points which are on the lines of @ are the vectors (x, y) € IF¢ x IF¢ such that
Ox.y) =xTy =0.

The above equation represents the set of points B(0).
Let ./ be the spread-set relative to £ and 4. Then

Y={x=0U{y=Mx|Me U}
Recall that . is a set of 2¢ symmetric matrices. The line oval ¢ is
O={x=0}U{y=Mx+xy|Me.d},
where the vector x,, is determined by the condition
O(x, Mx +xy) =x"Mx+x"x)y =0 forall xelF{.
Ifx=(x,..., xd)T, xy = (o, .., ocd)T and the symmetric matrix M has entries ay;,
i,j=1,...,d, a calculation proves that
d
Z a,,x +ox;) =0, forall x; € IF,.
i=1
Hence o; =a;, i=1,...,d. We reserve the symbol x,; to denote the vector
(a11, ... ,add)T, where (ajy, ..., a4s) is the main diagonal of the matrix M.
Now we can write the regular triples of . Denote by (c0) and (M), M € .4, the

points on the line at infinity, corresponding to the subspaces x =0 and y = Mx,
respectively. We claim:
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for every triple {r\,r,r3} of distinct vectors of IFg\{xM} such that ri +ry +r3 = xy,
the triple of lines of o4,

{y=Mx+r,y=Mx+r,y=Mx+rs}

is (M)-regular.
Also, for every triple {r1,ry,r3} of distinct vectors of TFS\{0} such that v, +ry +
r3y =0, the triple

X=r,X="r,X=1r3
is (c0)-regular.

To prove the claim, consider the intersection between the line y = Nx + & and the
lines of the first triple, where N # M. We find the vectors

ve=((N+M) " +h), M(N+M)" (re +h) +r.), k=123

Since M and N are symmetric matrices and r; + r; + r3 = x)7, we have

O(v1) + Q(v2) + O(v3)
=h"(N+M)""MN+M)""h+h"(N+ M) "xy

+x,(N+M)""M(N + M) xp + x),(N+ M) ' xy.

As xTMx + x"x; = 0 for all x € F{, putting in the above equation (N + M) 'h = x
and (N + M) 'x) =y, we get

O(v1) + O(12) + O(v3) = (x" Mx+x"xp) + (y" My +y"xp) = 0.

Consequently, if two of the vectors vy, k = 1,2, 3, are not in B(00) = S(Q) then the
third is in B(0).
The other case is similar. OJ

Now we will prove that any symplectic translation plane admits a completely regu-
lar line oval.

Let o7, be a symplectic translation plane of even order ¢ = 24 defined by the sym-
plectic spread X = {Sy, Si,...,S,;} of a 2d-dimensional vector space V' over GF(2),
equipped with a non-degenerate alternating bilinear form f. Let Q be a quadratic
form which polarises to f and whose group is O*(2d,2). Let S(Q) ={veV |Q(v) =0}
be the set of singular vectors of Q. Then

_ ~2d-1 a1 q(q+1)
S(Q)| =241 4241 = T4ED).



Symplectic translation planes and line ovals 133

Lemma 1. Any maximal totally isotropic subspace U not lying on S(Q) meets S(Q) in
a (d — 1)-dimensional subspace.

Proof. U has dimension d and the restriction of Q to U gives rise to a linear form on
U which is not the zero form, since U is not contained in S(Q). Therefore S(Q)N U =
{ve U] Q(v) = 0} is a hyperplane of U and so its dimension is d — 1. O

Lemma 2. S(Q) contains exactly two distinct components of X.

Proof. Let k be the number of components of ¥ which are contained in S(Q). Since
¥ is a spread, then

S(Q) = (SoNS(Q)U---U(S,NS(Q))
where (S;NS(Q))N(S;NS(Q)) = (0), for i # j. By the previous lemma
IS(Q)| =1+k(29—1)+ (29 +1-k)2 " - 1).
Since [S(Q)| = 2%~ 42971 k = 2 follows. H
For any v e S(Q), the function Q, : V' — IF,, defined by Q,(w) = Qv+ w), is a

quadratic form on V' which polarises to f. Also, the set of singular vectors of Q, is
S(Q) + v. Therefore Lemma 2 applies to each S(Q) + v, with v € S(Q).

Lemma 3. Let S and T be two distinct components of X contained in S(Q). Then for
every ve S\{0} there is exactly one component S, € ¥ such that S, +v < S(Q) and
Sy, # S, S, # T. Moreover, if v,w € S\{0} and v # w then S, # S,,.

Proof. Let v e S\{0}. Then S(Q) + v contains two distinct components of X, one of
which is S. Let S, be the other. As S, = S(Q) + v, 50 S, + v = S(Q). Clearly S, # S.
We claim that S, # T. If S, =T, then T < S(Q)N(S(Q) + v)). Therefore for all
zeT

0=0(z) = Qu(z) = Qv +2) = Q(v) + Q) +f(v,2).
Since Q(v) = Q(z) =0, then f(v,z) = 0 for all z € T, which is absurd.
In a similar way we can prove the last assertion of the lemma. By way of contra-

diction, let S, = S,, for some v # w in S\{0}. Then S, = (S(Q) +v) N (S(Q) + w).
Therefore for all z € S,

0= 0.(z) = Qu(2).
Then Q(v + z) = Q(w + z) implies

O(v) + 0(z) +/(v,2) = Q(w) + Q(2) +f(w, 2).
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As Q) =0(w)=0, so f(v+w,z)=0 for all zeS, which is absurd, as
v+ we S\{0}. O

Theorem 7. Let V be a 2d-dimensional vector space over GF(2), f a non-degenerate
alternating bilinear form and X = {Sy, S1,...,S;} a symplectic spread of V, where
g =2%and d > 3. Then the following statements hold.

1. The set O = {Sy,S1,S2 4+ v2,...,S,+ v}, where va, ... v, are, in a suitable order-
ing, the non-zero vectors of Sy, is a line oval in the translation plane </ (X) of order
q = 29 defined by X.

2. The vector set SoyUS1U (Sy+v2)U---U (S, +vy) is the set of singular vectors of
a quadratic form Q which polarises to f.

3. O is completely regular.

Proof. Let Q be a quadratic form which polarises to f and whose group is 0" (2d, 2).
Further, let S(Q) be the set of singular vectors of Q. By Lemma 2, S(Q) contains two
components of X; let them be Sy and S;. So SyU.S; = S(Q). By Lemma 3, S(Q)
contains the subset

SoUSIU(Sy+v)U---U(Sy+vy),

where v,,...,v, are, in a suitable ordering, the non-zero vectors of Sy and the sets
Sk + vk, k=2,...,q, are pairwise distinct. Then in the translation plane .7 (X) the
vector set S(Q) contains ¢ + 1 distinct lines. Denote by € this set of lines. Since
|S(Q)| = g(g+ 1)/2, then the number of points which are not on the lines of ¢ is
to = q(q — 1)/2, since the vector space has ¢* vectors. Because of Proposition 1, ¢ is
a line oval whose nucleus is the line at infinity. Also, since the number of points which
are on its lines is ¢(g + 1)/2, then

S(Q):S()USlU(Sz—‘y—Uz)U---U(Sq—l—Uq).

This proves statements 1 and 2. Statement 3 follows from Proposition 2 and Theo-
rem 6. O

Theorems 7 and 6 prove Theorem 3 stated in the Introduction.

At this point we have a computational tool to describe line ovals when the trans-
lation plane is defined by a spread of a vector space over GF(2). However, a trans-
lation plane of order ¢” is usually constructed from spreads of a 2n-dimensional
vector space over IF, = GF(g), with ¢ > 2. Therefore it is useful to illustrate how
the methods developed during the proof of Theorem 6 can be applied to this
more common situation. So let V' = V(2n, q) be a 2n-dimensional vector space over
IF, = GF(g), where ¢ = 29, equipped with a non-degenerate alternating bilinear form
S and £ = {S,,S1,...,S;} a symplectic spread of V. Denote by /(%) the corre-
sponding translation plane of order ¢". Fix two components of X, say Sy and S} and
choose dual bases {v,vs,...,v,} in Sy and {wy, wy,...,w,} in S| so that
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f(xp), (x, ) =x"y +p'x,

where x,x’, y, y’ are vectors of IF/. A quadratic form Q which polarises to f and
whose group is O (2n, q) is

O((x,y)) =x"y.

View the vector space IF) x IF)' as a 2nd-dimensional vector space over IF;. Let
Tr: IF, — IF, be the trace map. As explained at the beginning of the section, using
the bilinear map f’ = Tr o f, the symplectic spread T gives rises to a symplectic spread
Y/ of IF} x TF44, such that the plane .« (X) is identical to the plane .«/(X'). Because of
Theorem 7, the plane .oZ(X') admits a completely regular line oval ¢’, such that B(¢')
is the set of singular vectors of the quadratic form Q' = Tr o Q which polarises to /.
Regard the line oval (O’ as a line oval ¢ of ./ (X). Consequently, the points which are
on the lines of ¢ are the vectors (x, y) € IF; x IF} such that

Tr(Q(x, y)) = Tr(x'y) = 0.

The above equation represents the set of points B(0).
Let ./ be the spread-set associated to X and 4. Then

S={x=0tU{y=Mx|Mce 4},
the matrices of .# are symmetric and the line oval @ is represented as
O={x=0U{y=Mx+xy|Me.d},
where the vector x,, is determined by the condition
Tr[Q(x, Mx + xy)] = Tr[x' Mx+x"xy] =0 forallxelF,.
If x = (xq,... ,xn)T, xy = (o, .. ,oc,,)T and the symmetric matrix M has entries ay,

i,j=1,...,n, a calculation proves that

=0, forallx;el,.
=1

n
Tr lZ(a,»[xf + ax;)

d—1 . d—1
Hence o; = alzl ,i=1,...,n. We use the symbol \/a to denote a*>*  and reserve

now the symbol x,, to denote the vector (y/ari,..., M)T, where (ajq,...,am) is
the main diagonal of the matrix M.

With a similar construction as that in the proof of Theorem 6, we can prove that
the line oval @ is completely regular writing explicitly its regular triples.

Denote by (c0) and (M), M € ./, the points on the line at infinity of .7 (%), which
correspond to the subspaces x = 0 and y = Mx, respectively.
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Theorem 8. The triple {y = Mx+r;,y = Mx+ry,y=Mx+r3} is (M)-regular if
and only if vy + ry + r3 = xpy, where ry,ry,r3 are distinct vectors of IF;\{xM} Also,
the triple {x = r1,x = ry,x = r3} is (00)-regular if and only if r| + vy + r3 = 0, where
ri, 12,13 are distinct vectors of TF/\{0}.

Proof. The proof is essentially similar to that in the proof of Theorem 6. For the sake
of completeness, we repeat it.

Consider the intersection between the line y = Nx + h and the lines of the first
triple, where N # M. We find the vectors

ve=((N+M)" (e +h), M(N+M) " (re+h) +r), k=1,2,3.
Assume r; + 1y + r3 = xp7. Then
Tr[Q(v1) + O(v2) + O(v3)]
=Trlh " (N + M) "M(N + M) "h+h" (N + M) 'xy
+x,(N+M)"M(N+ M) xp +x),(N+ M) " xp].

Since Tr[x'Mx+x"xy] =0 for all xelF), putting in the above equation
(N+M)"'h=xand (N + M) 'xy =y, we get

Tr[Q(v1) + Q(v2) + O(v3)]
=Tr(x"Mx+x"xp) + Tr(y " My +y " xp) = 0.
Consequently, as the trace map is additive, if two of the vectors v, k = 1,2, 3, are
not in B(0O) then the third is in B(0).
To prove the only if part of the theorem it suffices to note that the number of (M)-
regular triples is (¢” — 1)(¢" — 2)/6, which is also the number of triples {ri,r2,r3},

ri € IF/\{x)}, whose sum is x.
The other case is similar. O

Examples. 1. The desarguesian plane AG(2, q). Let f be the non-degenerate alternat-
ing bilinear form

F(x ), (X 0") =xy" +yx', x4,y €TF,
with associated quadratic form Q((x, y)) = xy. The symplectic spread is
E={x=0}U{y=mx|xelF,}
and a completely regular line oval is

O={x=0}U{y=mx+vm|mel,}
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2

Since m +— m~ is an automorphism of IF,, letting k* = m, we can write

O={x=0}U{y=k*x+k|keT,}.

O is a line conic.

2. The Liineburg plane of order q*, q¢ = 2%+, see [6] and [8]. Let o be the auto-
morphism of F, defined by @ — a®""'. Then ¢ =2 and ¢+ 1 and o + 2 are auto-
morphisms of the cyclic group I, . Using the standard alternating bilinear form,
define the symplectic spread

T={x=0tU{y=M,px|a,belF,}

where x, y € Iqu and

-1 -1
a a° +b1+a
Ma,b = -1 140! .
a’ +b't° b

A completely regular line oval is

O={x=0}U{y= M, x+ (Va,Vb)' |a,beTF,}.

4 Completely regular line ovals

This last section is devoted to the proof that if @ is a completely regular line oval in a
translation plane of even order ¢ = 29, then 2(0) =~ #'(2d). We will need some
known results about P-regular line ovals (see Definition 2 in the Introduction). Nota-
tion is as in Section 2.

Let II, be a projective plane of even order g, <7, = H;’ the affine plane deduced
from II, by deleting the line n and & its set of affine lines. Let ¢ be a line oval with
nucleus n. For every line £ € £\ 0, let L be the point /N n and define

S ={me P\O|\m+#/{and /Nme B(O)}U(F\(ONFL)).
Note that £ € .

Result 1. The incidence structure #(0) whose set of points is L\O and whose blocks
are the subsets &, { € L\O, is a Hadamard symmetric design with parameters

v=¢q>—1, k=91

admitting the null polarity { — .

The proof is straightforward.
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Suppose now that the order of the plane is greater than or equal to 8. Let P be
any point on n and o the unique line of ¢ N Zp. From now on we assume that ¢ is a
P-regular line oval.

Result 2. 7, = Zp\{n} is a d-dimensional vector space over GF(2). Such a structure
is determined as follows. Let x,y € F, with x # y. Then define:

Xt+x=0, XxX+o=0+x=x, X+y=z,
where z is the third line of Fg such that {x, y,z} is P-regular.

The dual proof is in [9], Theorem 3, where associativity of addition is proved.
Note that |#,| = ¢ and that the number of P-regular triples equals the number of
2-dimensional subspaces of %,". This number is (¢ — 1)(g — 2)/6.

The hyperplanes of %,, which are its additive subgroups of order ¢/2, can be
recovered from the sets ..

Lemma 4. For every affine line £ ¢ OU Fp, &, N Fp is the set of points of a hyperplane
of Fp.

Proof. As [/NB(O)| =q/2, so |, NZFp| =q/2. Therefore it suffices to prove that
S N Fpis asubgroup of . Now if x, y € & N Fp, then also z = x + yisin S N Fp,
since {x, y,z} is a P-regular triple. ]

It follows that for every /,m € £\(OU Fp) with £ # m,

if 3N Fp =50 Fp

%, 0 % O | = .
otherwise.

RN BN IEN

Lemma 5. Let £ € £\(OU Zp). Then on each point R of ¢ with R # ¢/ No there is
exactly one line m # ( such that %, N Fp = %, N Fp.

Proof. Let 7y = Fg\{n, PR,0 N Fr}. Note that | 72| =q— 1 if R¢ B(C), while
|72 = q—3if Re B(0).
Let Hy, = |9, N %N Fp|, r e . Then

if R ¢ B(O)

Z H/,r =

ce 70
regy

()

AIQN 'thN

+2¢q— 55 if Re B(0).

Relation (x) is obtained counting in two different ways the pairs (z,r) €
(S N Fp) x F5 such that zNr e B(O).

Let k& be the number of lines r e fRO such that & NFp = S NFp. If R¢ B(O),
from ()



Symplectic translation planes and line ovals 139

kg1l L
D Hr=ky+(g—1-kg="

re 70
re 7y

So k=1.If R e B(0), again from (x) we get

_ 4 3_pmi_T _ 54
ZOH/J.kaJr(q 3-k)g="7+24-53
VE;"R
Hence k = 1. O

Using Lemma 5 it is easy to prove that the equivalence relation on #\(%p U 0)
{~m if S5 NFp=5NFp

has ¢ — 1 classes, each class has ¢ elements and that the lines of a class plus the line o
constitute a line oval. Therefore the P-regular line oval 0 determines g — 1 other line
ovals O;, i =1,...,q — 1, all with nucleus n, such that

l. ONOC;=0NFp={o},i=1,...,q—1,
2. /,me O\{o} if and only if ¥, N Fp = &, N Fp.

Definition 5. The set of line ovals {0, O;},_,
P-bundle of </,

g—15 S above determined, is called the

yeeey

Note that the ¢ — 1 hyperplanes of %, are determined by the sets %, N %p, where
/,'G(Q[,l': 1,...7q—1.

A property which characterizes the line ovals ¢;, i = 1,...,¢ — 1, is given by the
following lemma.

Lemma 6. Let O’ be a line oval such that 0' N O = ONFp = {o0}. Then 0" is one of the
line ovals O; if and only if xN\ B(O) = xN B(O') for every line x € Fy\{o} such that
xNB(O)NB(O") # .

Proof. Let (' = 0;, some i. If x € Z,°\{o} and R e xN B(0) N B(0;), then there is a
line / of O; such that /N x = R. Therefore x € ¥, N Zp. Because of property 2 above,
x € %, N Fp for every m € O;. Using the null polarity of the 2-design #(0), m € %,
for every m e ;. Therefore xNB(0;) = xNB(O). As |xNB(O;)| = |xNB(O)|, so
xNB(O) = xN B(0O;).

To prove the converse, it suffices to show that if / and m are in @’ then
SN Fp=9,NFp. By way of contradiction, let /N xe B(O), but mNx ¢ B(0O),
some x € 7, \{o}. Since /Nx e B(O) N B(C'), then xN B(0) = xN B(O"). Therefore
mNx¢ B(0), a contradiction. O

From the above lemma we deduce that the line oval ¢;,i=1,...,¢q — 1, is P-regular
and has the same P-regular triples as (.
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Proof. Let {x, y,z} be a P-regular triple for . Let / be a line such that /N x ¢ B(O;)
and /Ny ¢ B(O;). We claim that /N z e B(0;). We treat the cases /N x € B(®) and
/Ny e B(0), the others being similar.

Since {x, y, z} is P-regular for ¢ and /Nx e B(0O), /Ny e B(O), then /Nz e B(0O)
and 4(%) N%(¥,) < <. Because of Lemma 6, from /N x ¢ B(¢;) and /Ny ¢ B(0;)

Oi=b(%), Oic=%(S)

follows. Therefore O; « (%) NE€(;) = .. Thus mNze B(O); whence /Nze
B(0)). O

Let now @ be a line oval such that O N O = O N Fp = {o}. If O is P-regular and has
the same P-regular triples as ¢, then O is one of the ©;, i=1,...,q — 1. To prove
the assertion, first note that ¢ and € induce on #, the same additive structure. Let
x € Zp. Denote by I1,...,1,, the /2 hyperplanes of #;" which contain x. As each
I; can be realized as Y} ﬂ/p, where /; is any affine line of %y with O # P, so
/ Nx e B(0O) if and only if ;N x € B(0O). Therefore xN B(0) = xN B(O). Because of
Lemma 6, O is one of the llne ovals O, i=1,...,q— 1.

We have proved

Result 3. (see also [10], Theorem 1 and Lemma 3) Let O be a P-regular line oval. Then
there exist ¢ — 1 other line ovals O;, i =1,...,q — 1, all with nucleus n, such that

1. ON0;=0NFp=1{o},i=1,....q—I;
2. ¢£,me O\{o} if and only if 9, N\ Fp = 9, Fp.

Moreover, each line oval O;, i =1,...,q— 1, is P-regular, has the same P-regular tri-
ples as O and any other P-regular line oval having the same P-regular triples as O is one
of the Oy, i=1,...,q— 1.

We apply now Result 3 to the case where </, = I1] is a translation plane of even
order ¢ = 27 with translation group T and @ is a completely regular line oval with
respect to the line at infinity »n. If P is a point on n, denote by Tp the group of all
translations with centre P.

Lemma 7. Let g € T. Then (09 is a completely regular line oval and if g € Tp then O and
09 have the same P-regular triples.

Proof. First of all note that (9 is a line oval with nucleus n. Also, B(0)? = B((7).
For, if R e B(0), then there is a line r of @ such that R € r. Therefore RY € B((Y),
and so B(0)? = B((9). Since |B(0)?| = |B(0?)|, then B(0)? = B((7) follows.

Let {x, y,z} be any P-regular triple for ¢, where P is any point on n. We prove
that {x¥, y9,z9} is a P-regular triple for (9. Let / be any line not on P and assume
that ZNxY and /N y9 are not in B(®Y). If /Nz9 ¢ B(OY), then the points /9 N x,
/9Ny, 9Nz are not in B(O), which is absurd, as {x, y,z} is a P-regular triple for ¢.

In particular, if g € Tp, then {x9, y9,z9} = {x, y,z}. O
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Because of this lemma and Result 3 above the P-bundle defined by O is
{07 g e Tp}. We fix the following notation:

{So,...,S,} is the set of points of #;

T; is the group of all translations with centre S;, i =0,1,...,¢;
Z; 1s the pencil of lines thought S;, i =0,1,...,¢;

o;isthe line ONZ;, i =0,1,...,q;
F'=F\{o;i},i=0,1,...,q.

Recall that %" is a d-dimensional vector space over GF(2) and that the S;-bundle
is {09 g e T:}.

Lemma 8. Let I = {o;,m, ..., my)_1} be any hyperplane of the vector space 9'7* Then
there is a subgroup H of T;, with i # j, of order q/2 which stabilizes I. Moreover, also
the group HT; of order q* /2 stabilizes I.

Proof. Let ¢ be a line of #;\{0;,n}, such that %, N.%; = I. Then the points ¢ Nmy,
k=1,...,q/2—1, are in B(0). Let {0,0™,... 0"} be the S;-bundle, where
{1,h1,...,hy_1} = T;. Each of the lines my, k =1,...,4/2 — 1, is on one of the line
ovals of the S;-bundle. It is not restrictive to assume that my € 0" k=1,...,q/2 — 1.
So let H={l,hy,...,hy_1}. From Lemma 6, /Nmy € B(O)N B(O") implies
/N B(O) = /N B(O™) for every hy € H. Therefore for any /4y and &, in H

(¢ N B(O"))" = /0 B(O™") = /0 B(0).

Hence H is a subgroup of T; which stabilizes /.
Clearly, also HT; stabilizes I and has order ¢?/2, as HN T; = {1}. O

The elementary abelian 2-group T is sharply transitive on the points of .«Z,. Fix a
point Py of Z,. Then for any point P # Sy, ..., S, there is exactly one g € T such that
P = PJ.If P= P{ and Q = P/, then addition of points is meaningful: P+ Q := Pé’h.
In this way the set of points of .2/, becomes an elementary abelian 2-group G of order
¢? isomorphic to T, whose identity element is the point Py.

The design 2(@) has been defined in Section 2.

Lemma 9. For any distinct blocks b and ¢ of 2(0), bAc is a left coset of a subgroup
of G.

Proof. First we consider the case b = B(()) and ¢ = B((0Y), g € Ts, where S is one of
the points Sy, Si,...,S,; and Ts is the group of all translations with centre S. Let
FsNO = {o}. If £ € OI\{o}, then ¥, NFs is a hyperplane of F¢ and ¥, N Fs =
ImNFs for every £, me 0\{o}. Let I = ;N Fg={0,z1,...,24>-1}. The remain-
ing affine lines of Fs, say Zy,...,Z,, share the following property:
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any pointon z;, i =1,...,q/2, is either in B(0O) or in B(07).

Thus B(0) AB((?) is the set of points on the lines Zy, ..., Z,». These points are ¢?/2
in number.

Let Py e B(O)AB(0Y) (Py is the identity element of G). Then P, is on one
of the lines Zzj,...,Z,, say z;. If heTs, then Pg is a point on Z;. Therefore
Pl'e B(O)AB((9) for any h e Ts. By Lemma 8, let H be a subgroup of 7}, where
S # S, of order ¢/2 which stabilizes I and its complement {Zi,...,Z, /2} Then HTgs
stabilizes I and its complement. So B(¥) A B((Y) consists of the pomts {P, ity |hie H,
g; € Ts}, which is a subgroup of G of order ¢*/2.

Next let us examine the case where Py ¢ B(0) A B((0Y). Then Py is in B(O) N B(07).
So Py is on one of the lines {o,z1,...,2,_1}. Using the subgroup H as determined
above, we have that

K = {Py" | e H,g; e Ts} = (B(C) N (B(0*)) U(€B(C) NCB(C7))

is a subgroup of G. Therefore if P is any point on one of the lines Zi, ..., Z;,, then
B(O)AB(0Y) = P+ K is a left coset of a subgroup of G.

The general case follows from the above ones. It suffices to note that if b and
¢ = B(0") are two distinct blocks of Z((), then b= B((Y), where g e T. Since
B(0)A B(0") is a left coset of a subgroup of G the same holds for B(09)AB(0"). [

Theorem 9. Let </, be a translation plane of even order q =29 with d >3 and 0 a
completely regular line oval. Then %(0) = 1(2d).

Proof- The proof follows from the above lemma and Theorem 4. O
Theorems 9 and 6 prove Theorem 2 stated in the Introduction.

Acknowledgments. I am indebted to W. M. Kantor who focused my attention on his
paper [3]. Without his suggestion and a useful correspondence this paper would not
have been written.
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