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Symplectic translation planes and line ovals
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Abstract. A symplectic spread of a 2n-dimensional vector space V over GFðqÞ is a set of qn þ 1
totally isotropic n-subspaces inducing a partition of the points of the underlying projective
space. The corresponding translation plane is called symplectic. We prove that a translation
plane of even order is symplectic if and only if it admits a completely regular line oval. Also,
a geometric characterization of completely regular line ovals, related to certain symmetric
designs S1ð2d Þ, is given. These results give a complete solution to a problem set by W. M.
Kantor in apparently di¤erent situations.
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1 Introduction

Let Pq be a finite projective plane of order q. An oval is a set of qþ 1 points, no three
of which are collinear. Dually, a line oval is a set of qþ 1 lines no three of which are
concurrent. Any line of the plane meets the oval O at either 0, 1 or 2 points and is
called exterior, tangent or secant, respectively. For an account on ovals the reader is
referred to [1], [2] and [7]. If the the order of the plane is even all the tangent lines
to the oval O concur at the same point N, called the nucleus (or the knot) of O. The
set OU fNg becomes a hyperoval, that is a set of qþ 2 points, no three of which are
collinear. A regular hyperoval is a conic plus its nucleus in a desarguesian plane. If O
is a line oval, then there is exactly one line n such that on each of its points there is
only one line of O. This line n is called the (dual) nucleus of O. The ðqþ 2Þ-set OU fng
is a line hyperoval or dual hyperoval.

Let Aq be a translation plane of even order q ¼ 2d and O a line oval whose nucleus
is the line at infinity. Let T be the translation group of Aq and A its set of points.
Identifying the elements of A with those of T and using addition as the operation on
A, define

BðOÞ ¼ fP A A jP is on a line of Og:

In [3], Theorem 7, it is proved that BðOÞ is a di¤erence set in the abelian group A.
The corresponding symmetric design DðOÞ has parameters



v ¼ q2; k ¼ q2

2
þ q

2
; l ¼ q2

4
þ q

2
:

This design has the same parameters as certain designs S1ð2d Þ, see [3] and also Sec-
tion 2. In two cases Kantor proved, see [3], Theorems 8 and 9, that DðOÞ is iso-
morphic to S1ð2d Þ, namely

1. Aq is desarguesian and O is a line conic (i.e. O becomes a conic in the dual of the
projectivization of Aq);

2. Aq is the Lüneburg plane of order q, where q ¼ 22d with d > 1 odd and O is a
suitable line oval.

Such a line oval in the Lüneburg plane has the property of being stabilised by a col-
lineation group isomorphic to the Suzuki group Szð2dÞ acting 2-transitively on its
lines. Its existence was first proved in [3] by methods related to the symmetric design
S1ð2d Þ. There is also a direct construction, based on analytical methods, see [6].

Quite naturally W. M. Kantor raised the problem of finding out which translation
planes were related to S1ð2d Þ and which geometric conditions on a line oval of a
translation plane of order 2d were necessary and su‰cient in order that DðOÞ be
isomorphic to S1ð2d Þ.

The aim of this paper is to give a complete solution to the above problem. To
get such a solution results about P-regular line ovals are used. In [9] and [10] ovals
admitting a strongly regular tangent line are investigated. Here we need analogous
results in a dual setting. So, we recall some basic definitions.

Definition 1. Let O be an oval with nucleusN inPq, where qd8 is even. A tangent line
s to O is strongly regular if for every pair of distinct points X ;Y A snððsVOÞU fNgÞ
there is a third point Z A snððsVOÞU fNgÞ such that for every point P0N of Pq at
least one of the lines PX , PY , PZ is a secant line. Each non-ordered triple of points
with the above property is called s-regular.

The dual definition is as follows. Let O be a line oval of Pq, q even, and n its
nucleus. Denote by Pn

q ¼ Aq the a‰ne plane deduced by Pq by deleting the line n

and by A the set of points of Aq. As above, set

BðOÞ ¼ fP A A jP is on a line of Og:

Let FP denote the pencil of lines on P, where P is a point of Pq.

Definition 2. Let O be a line oval with nucleus n and P a point on n. O is called P-
regular if for any pair of distinct a‰ne lines x; y A FPnðFP VOÞ there is a third a‰ne
line z A FPnðFP VOÞ such that for every a‰ne line l not on P at least one of the
points lV x, lV y or lV z belongs to BðOÞ. Each non-ordered triple of lines sharing
the above property is called P-regular.
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In [9], Theorem 3, it is proved that if the oval O has a strongly regular tangent line,
then the order q of the plane is a power of 2. By duality the same result holds in the
case of a P-regular line oval.

Known examples of ovals with a strongly regular tangent line are the translation
ovals, see [9] and [10]. By duality we obtain examples of P-regular line ovals.

Non-degenerate conics are characterized by the following result, see [10], Corol-
lary 1.

Theorem 1. In PGð2; 2dÞ, where dd 3, an oval O is a non-degenerate conic if and only

if O admits two distinct strongly regular tangent lines.

This shows that a non-degenerate conic admits qþ 1 strongly regular tangent lines.

Definition 3. An oval O with nucleus N is called completely N-regular if every line on
N A O is strongly regular.

We need the dual definition.

Definition 4. A line oval O is called completely regular with respect to its nucleus n if
O is P-regular for every point P on n.

Our main results are summarized in the following theorems.

Theorem 2. Let Aq be a translation plane of even order q ¼ 2d , where dd 3, and O a

line oval whose nucleus is the line at infinity n. Then DðOÞ is isomorphic to S1ð2d Þ if
and only if O is completely regular with respect to the line n.

In a 2n-dimensional vector space over GFðqÞ, equipped with a non-singular alter-
nating bilinear form, a symplectic spread is a family of qn þ 1 totally isotropic n-
subspaces which induces a partition of the points of the underlying projective space.

Theorem 3. Let Aq be a translation plane of even order q ¼ 2d , where dd 3. Then Aq

admits a completely regular line oval with respect to the line at infinity if and only if Aq

is defined by a symplectic spread of a 2d-dimensional vector space over GFð2Þ.

In particular, the above theorem states that any symplectic translation plane of even
order admits a line oval, a well known result, see [12]. There are many examples of
symplectic translation planes, see [4] and [5]. So there are many examples of com-
pletely regular line ovals. Note that the above theorem answers the question of find-
ing an internal criterion for a translation plane to be symplectic, see [5], page 318.

The paper is organized as follows. In Section 2 we fix some notation and introduce
the designs DðOÞ and S1ð2d Þ. Section 3 is devoted to prove that the only translation
planes admitting a completely regular line oval are the symplectic ones. This is the
content of Theorem 3 above. Also, a method to determine explicitly the regular triples
of a completely regular line oval is described.
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Finally in Section 4 we prove that, for a completely regular line oval O in a trans-
lation plane, DðOÞGS1ð2d Þ holds. This result and those of Section 3 will provide a
proof of Theorem 2.

2 Preliminary results

We will use fairly standard notation. In particular, dealing with planes or symmetric
designs, points will be denoted by P;Q; . . . ;X ;Y ;Z, lines by l;m; . . . ; r; s; . . . ; x; y; z
and blocks by a; b; . . . ; x. The symbol FP will denote the pencil of lines of a projective
plane through the point P. Sometimes the line through two distinct points P and Q

will be denoted by PQ.
If T is a finite set, then jT j denotes the size of T , CT the complement of T and

TnS the set of elements of T not in S. Finally, if h : A ! B is a map between the sets
A and B, then Ph is the image under h of the element P A A (in some cases also the
symbol hðPÞ is used).

Let Pq be a projective plane of even order q, O a line oval with nucleus n and
Aq ¼ Pn

q the a‰ne plane deduced from Pq by deleting the line n. Let L be its set of
a‰ne lines. Denote by BðOÞ the set of a‰ne points which are on the lines of O and by
CBðOÞ its a‰ne complement. It is easy to prove that

jBðOÞj ¼ qðqþ 1Þ
2

; jCBðOÞj ¼ qðq� 1Þ
2

;

and if R A BðOÞ then there are two lines of O through R. Moreover, if l B O is any
a‰ne line then

jlVBðOÞj ¼ jlVCBðOÞj ¼ q

2
:

The following proposition is a useful criterion to decide if a set of qþ 2 lines of Pq

is a line hyperoval.

Proposition 1. Let W be a set of qþ 2 lines of Pq. Then W is a line hyperoval if and

only if the number of points which are not on the lines of W is greater than or equal to

qðq� 1Þ=2.

Proof. (See also [11], Theorem 3) Let kd 2 be the maximum number of concurrent
lines of W and ts the number of points which are on s lines of W, s ¼ 0; 1; . . . ; k. By a
standard counting argument

Xk
s¼0

ts ¼ q2 þ qþ 1 ð1Þ

Xk
s¼1

sts ¼ ðqþ 1Þðqþ 2Þ ð2Þ
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Xk
s¼2

sðs� 1Þts ¼ ðqþ 2Þðqþ 1Þ: ð3Þ

Subtracting Equation (3) from (2)

t1 �
Xk
s¼3

sðs� 2Þts ¼ 0: ð4Þ

Since t0 d qðq� 1Þ=2, elimination of t1 from (1) and (4) gives

t2 þ
Xk
s¼3

ðs2 � 2sþ 1Þts c q2 þ qþ 1� qðq� 1Þ
2

: ð5Þ

From (3)

2t2 ¼ ðqþ 2Þðqþ 1Þ �
Xk
s¼3

sðs� 1Þts: ð6Þ

From (5) and (6)

Xk
s¼3

ðs2 � 3sþ 2Þts c 0:

As s2 � 3sþ 2 > 0 for any sd 3, we infer ts ¼ 0 for any sd 3. Therefore kc 2, that
is W is a line hyperoval. The converse is trivial. r

For the theory of translation planes we refer to [8]. Let Aq be a translation plane
of even order q ¼ 2d , where dd 3, T its translation group and O a line oval with
nucleus the line at infinity n. Note that Og is a line oval with nucleus n for every
g A T . Also, if Og and Oh, g; h A T , are distinct line ovals, then they have exactly one
line in common.

For every g A T , let BðOgÞ be the set of a‰ne points which are on the lines of Og.
Denote by DðOÞ the incidence structure whose points are the points of Aq and whose
blocks are the sets BðOgÞ, g A T .

Theorem 4. DðOÞ is a symmetric design with parameters

v ¼ q2; k ¼ qðqþ 1Þ
2

; l ¼ q2

4
þ q

2
:

Proof. (see also [3], Theorem 7 (i)) The number of points is q2 and equals the number
of blocks. Each block contains qðqþ 1Þ=2 points, which is the total number of points
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which are on the lines of a line oval. It remains to prove that any two distinct blocks
have q2=4þ q=2 common points. Consider any two distinct line ovals Og and Oh. Let
s be the unique line they have in common and Sm the point nV s. For any line l of
the plane not in Oh there are q=2 points of BðOhÞ which belong to l, one of which is
lV s. Let l vary on Ognfsg. Since a point on lVBðOgÞ not on s is also determined
by another line of Og, we have q=2ðq=2� 1Þ common points. To these we add the q

points on s (excluding Sm) to obtain q2=4þ q=2 common points. r

We introduce now another symmetric design, having the same parameters as DðOÞ
and investigated in [3]. So our reference is [3], with only some minor change in nota-
tion. We use only one type of orthogonal group of a 2d-dimensional vector space
over GFð2Þ, namely Oþð2d; 2Þ, which is the linear group preserving a non-degenerate
quadratic form with index d. The symplectic group of a 2d-dimensional vector space
over GFð2Þ will be denoted by Spð2d; 2Þ.

If S and T are sets of points of a design, then ShT is the symmetric di¤erence
ðS UTÞnðS VTÞ.

Set

Hð2Þ ¼

�1 1 1 1

1 �1 1 1

1 1 �1 1

1 1 1 �1

0
BBB@

1
CCCA:

For each positive integer d, let Hð2d Þ be the tensor product of d copies of Hð2Þ.
Rows and columns of Hð2d Þ can be regarded as the points and blocks of a symmetric
design S1ð2d Þ, a point being on a block if and only if the corresponding entry is 1.
S1ð2d Þ has parameters

v ¼ 22d ; k ¼ 22d�1 þ 2d�1; l ¼ 22d�2 þ 2d�1:

Theorem 5. Let D be a symmetric design admitting a sharply point-transitive auto-

morphism group T. Define addition of points so that T is the set of right translations

of the group G of the points. Then the following statements are equivalent.

1. D is isomorphic to S1ð2d Þ for some d.

2. bhc is a left coset of a subgroup of G whenever b and c are distinct blocks.

3. CðbhcÞ is a left coset of a subgroup of G whenever b and c are distinct blocks.

Proof. See [3], Theorem 2. r

In [3], Section 4, the full automorphism group G of S1ð2d Þ is completely deter-
mined: it is a semidirect product of the translation group T of the 2d-dimensional
a‰ne geometry over GFð2Þ, AGð2d; 2Þ, with Spð2d; 2Þ. Moreover, if x is a block, then
Gx is isomorphic to Spð2d; 2Þ and is 2-transitive on x and Cx. Finally, if P A x then
GPx is Oþð2d; 2Þ.
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It follows that identifying the points ofS1ð2d Þ with the vectors of a 2d-dimensional
vector space V over GFð2Þ there exists a quadratic form Q with group Oþð2d; 2Þ
such that x is the set of singular vectors of Q (a vector v is a singular vector of Q if
QðvÞ ¼ 0). Therefore S1ð2d Þ can be constructed as follows.

Proposition 2. Let V be a 2d-dimensional vector space over GFð2Þ and Q a non-

degenerate quadratic form on V whose group is Oþð2d; 2Þ. Let SðQÞ be the set of sin-

gular vectors of Q. Then the points and blocks of S1ð2d Þ are the vectors of V and the

translates SðQÞ þ v, v A V .

Proof. See [3], Corollary 3. r

3 Symplectic translation planes

Let V ¼ Vð2n; qÞ be a 2n-dimensional vector space over Fq ¼ GFðqÞ. Vectors will
be denoted by v;w; . . . ; z, subspaces by S;T ;U ; . . . ;X ;Y . A spread of V is a family S
of qn þ 1 n-dimensional subspaces of V any two of which have in common the zero
vector only. A symplectic spread of V is a spread which consists of totally isotropic
subspaces with respect to a non-degenerate alternating bilinear form f .

Let S ¼ fS0;S1; . . . ;Sqng be a spread of V and AðSÞ the corresponding translation
plane of order qn, see [8]. If T is its translation group, then the points of AðSÞ are the
vectors of V and the lines are the translates of the components of S. A translation
plane defined by a symplectic spread is said to be symplectic.

Fix two distinct component of S, say S0 and S1. Then V ¼ S0 lS1. Choose bases
fv1; v2; . . . ; vng in S0 and fw1;w2; . . . ;wng in S1, so that B ¼ fv1; . . . ; vn;w1; . . . ;wng
is a basis of V . The subspaces S0 and S1 are identified with Fn

q and V with Fn
q �Fn

q .
Vectors of Fn

q are identified with n� 1 matrices, represented by symbols like x; y; . . . :
With respect to the basis B, the spread S determines a set M of n� n matrices over

Fq such that (see [8])

1. jMj ¼ qn and O A M

2. if A;B A M and A0B then A� B is non-singular

3. MnfOg acts sharply transitively on Fn
q nf0g.

The set M is called the spread-set associated with S. With respect to M and the basis
B

S ¼ fx ¼ 0gU fy ¼ Mx jM A Mg:

Note that we write y ¼ Mx to denote the subspace fðx;MxÞ j x A Fn
q g.

From now on we assume that q is a power of 2, q ¼ 2d . Let S ¼ fS0;S1; . . . ;Sqng
be a symplectic spread with respect to a non-degenerate alternating bilinear form f .
Then the bases in S0 and S1 can be chosen so that f ðvi;wjÞ ¼ dij , where dij is the
symbol of Kronecker and i; j ¼ 1; . . . ; n. Such bases are called dual. Therefore in the
basis B ¼ fv1; . . . ; vn;w1; . . . ;wng of V , f is represented by the matrix
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O I

I O

� �

where O and I denote the n� n zero and identity matrices. Then

f ððx; yÞ; ðx 0; y 0ÞÞ ¼ x>y 0 þ y>x 0;

where x; x 0; y; y 0 are vectors of Fn
2 , the symbol > denotes transposition and the prod-

uct is the ordinary product between matrices. A quadratic form Q which polarises to
f (i.e. Qðvþ wÞ ¼ QðvÞ þQðwÞ þ f ðv;wÞ for v;w A V ) is

Qððx; yÞÞ ¼ x>y:

With respect to this basis the associated spread-set M consists of symmetric matrices.
For, if y ¼ Mx is a component of S, then

f ððx;MxÞ; ðx 0;Mx 0ÞÞ ¼ 0

for every x; x 0 A Fn
q if and only if M ¼ M>.

The vector space Fn
q �Fn

q can be viewed as a 2nd-dimensional vector space
over F2. Let Tr : Fq ! F2 be the trace map: TrðxÞ ¼

Pd�1
i¼0 x2 i

. Then the bilinear
map f 0 ¼ Tr � f is a non-degenerate alternating bilinear form on Fnd

2 �Fnd
2 and

Q 0 ¼ Tr �Q is a quadratic form which polarises to f 0. The symplectic spread S gives
rises to a symplectic spread S 0 of Fnd

2 �Fnd
2 , such that the plane AðSÞ is identical to

the plane AðS 0Þ, see also [5].
The definition of completely regular line oval is in the Introduction, Definition 4.

Theorem 6. Let Aq be a translation plane of even order q ¼ 2d with dd 3 and O a line

oval with nucleus the line at infinity such that DðOÞGS1ð2d Þ. Then

1. Aq is a symplectic translation plane

2. O is a completely regular line oval.

Proof. Let S ¼ fS0;S1; . . . ;Sqg be a spread of a 2d-dimensional vector space
V over GFð2Þ which defines Aq. We can assume that the lines of O are
fS0;S1;S2 þ v2; . . . ;Sq þ vqg, where v2; . . . ; vq are, in some ordering, the non-zero
vectors of S0. As DðOÞGS1ð2d Þ, so, because of Proposition 2, there is a quadratic
form on V with group Oþð2d; 2Þ such that BðOÞ is the set of singular vectors of Q.
Let f be the non-degenerate alternating bilinear on V form polarised by Q, that is

f ðv;wÞ ¼ Qðvþ wÞ þQðvÞ þQðwÞ for v;w A V :

Let SðQÞ ¼ BðOÞ be the set of singular vectors of Q. Then for every v A SðQÞ the
quadratic form Qv defined by QvðwÞ ¼ Qðvþ wÞ, w A V , also polarises to f and its
set of singular vectors is SðQÞ þ v. As SðQÞ ¼ BðOÞ, so SðQvÞ ¼ SðQÞ þ v ¼ BðOtvÞ,
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where tv is the translation w 7! wþ v. Therefore the subspaces Si, i ¼ 0; 1; . . . ; q, are
totally isotropic with respect to f . For S0 and S1 are totally singular, since they are
contained in SðQÞ, and Si is contained in SðQviÞ ¼ SðQÞ þ vi, i ¼ 2; . . . ; q. The spread
S is then symplectic and Aq is a symplectic translation plane. This proves item 1 of
the theorem.

To prove that O is completely regular we make use of coordinates to write explicitly
its regular triples. Referring back to the construction at the beginning of the section,
write V ¼ S0 lS1 and choose dual bases fv1; . . . ; vdg in S0 and fw1; . . . ;wdg in S1 so
that, in the basis B ¼ fv1; . . . ; vd ;w1; . . . ;wdg,

f ððx; yÞ; ðx 0; y 0ÞÞ ¼ x>y 0 þ y>x 0;

where x; x 0; y; y 0 are vectors of Fd
2 . Thus the quadratic form Q is

Qððx; yÞÞ ¼ x>y

and the points which are on the lines of O are the vectors ðx; yÞ A Fd
2 �Fd

2 such that

Qðx; yÞ ¼ x>y ¼ 0:

The above equation represents the set of points BðOÞ.
Let M be the spread-set relative to S and B. Then

S ¼ fx ¼ 0gU fy ¼ Mx jM A Mg:

Recall that M is a set of 2d symmetric matrices. The line oval O is

O ¼ fx ¼ 0gU fy ¼ Mxþ xM jM A Mg;

where the vector xM is determined by the condition

Qðx;Mxþ xMÞ ¼ x>Mxþ x>xM ¼ 0 for all x A Fd
2 :

If x ¼ ðx1; . . . ; xdÞ>, xM ¼ ða1; . . . ; adÞ> and the symmetric matrix M has entries aij ,
i; j ¼ 1; . . . ; d, a calculation proves that

Xd
i¼1

ðaiix2
i þ aixiÞ ¼ 0; for all xi A F2:

Hence ai ¼ aii, i ¼ 1; . . . ; d. We reserve the symbol xM to denote the vector
ða11; . . . ; addÞ>, where ða11; . . . ; addÞ is the main diagonal of the matrix M.

Now we can write the regular triples of O. Denote by ðyÞ and ðMÞ, M A M, the
points on the line at infinity, corresponding to the subspaces x ¼ 0 and y ¼ Mx,
respectively. We claim:
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for every triple fr1; r2; r3g of distinct vectors of Fd
2 nfxMg such that r1 þ r2 þ r3 ¼ xM ,

the triple of lines of Aq

fy ¼ Mxþ r1; y ¼ Mxþ r2; y ¼ Mxþ r3g

is ðMÞ-regular.
Also, for every triple fr1; r2; r3g of distinct vectors of Fd

2 nf0g such that r1 þ r2 þ
r3 ¼ 0, the triple

x ¼ r1; x ¼ r2; x ¼ r3

is ðyÞ-regular.

To prove the claim, consider the intersection between the line y ¼ Nxþ h and the
lines of the first triple, where N0M. We find the vectors

vk ¼ ððN þMÞ�1ðrk þ hÞ;MðN þMÞ�1ðrk þ hÞ þ rkÞ; k ¼ 1; 2; 3:

Since M and N are symmetric matrices and r1 þ r2 þ r3 ¼ xM , we have

Qðv1Þ þQðv2Þ þQðv3Þ

¼ h>ðN þMÞ�1
MðN þMÞ�1hþ h>ðN þMÞ�1xM

þ x>MðN þMÞ�1
MðN þMÞ�1xM þ x>MðN þMÞ�1xM :

As x>Mxþ x>xM ¼ 0 for all x A Fd
2 , putting in the above equation ðN þMÞ�1h ¼ x

and ðN þMÞ�1xM ¼ y, we get

Qðv1Þ þQðv2Þ þQðv3Þ ¼ ðx>Mxþ x>xMÞ þ ðy>Myþ y>xMÞ ¼ 0:

Consequently, if two of the vectors vk, k ¼ 1; 2; 3, are not in BðOÞ ¼ SðQÞ then the
third is in BðOÞ.

The other case is similar. r

Now we will prove that any symplectic translation plane admits a completely regu-
lar line oval.

Let Aq be a symplectic translation plane of even order q ¼ 2d , defined by the sym-
plectic spread S ¼ fS0;S1; . . . ;Sqg of a 2d-dimensional vector space V over GFð2Þ,
equipped with a non-degenerate alternating bilinear form f . Let Q be a quadratic
form which polarises to f and whose group isOþð2d; 2Þ. Let SðQÞ ¼ fv AV jQðvÞ ¼ 0g
be the set of singular vectors of Q. Then

jSðQÞj ¼ 22d�1 þ 2d�1 ¼ qðqþ 1Þ
2

:
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Lemma 1. Any maximal totally isotropic subspace U not lying on SðQÞ meets SðQÞ in
a ðd � 1Þ-dimensional subspace.

Proof. U has dimension d and the restriction of Q to U gives rise to a linear form on
U which is not the zero form, sinceU is not contained in SðQÞ. Therefore SðQÞVU ¼
fv A U jQðvÞ ¼ 0g is a hyperplane of U and so its dimension is d � 1. r

Lemma 2. SðQÞ contains exactly two distinct components of S.

Proof. Let k be the number of components of S which are contained in SðQÞ. Since
S is a spread, then

SðQÞ ¼ ðS0 VSðQÞÞU � � �U ðSq VSðQÞÞ

where ðSi VSðQÞÞV ðSj VSðQÞÞ ¼ ð0Þ, for i0 j. By the previous lemma

jSðQÞj ¼ 1þ kð2d � 1Þ þ ð2d þ 1� kÞð2d�1 � 1Þ:

Since jSðQÞj ¼ 22d�1 þ 2d�1, k ¼ 2 follows. r

For any v A SðQÞ, the function Qv : V ! F2, defined by QvðwÞ ¼ Qðvþ wÞ, is a
quadratic form on V which polarises to f . Also, the set of singular vectors of Qv is
SðQÞ þ v. Therefore Lemma 2 applies to each SðQÞ þ v, with v A SðQÞ.

Lemma 3. Let S and T be two distinct components of S contained in SðQÞ. Then for

every v A Snf0g there is exactly one component Sv A S such that Sv þ vHSðQÞ and

Sv 0S, Sv 0T . Moreover, if v;w A Snf0g and v0w then Sv 0Sw.

Proof. Let v A Snf0g. Then SðQÞ þ v contains two distinct components of S, one of
which is S. Let Sv be the other. As Sv HSðQÞ þ v, so Sv þ vHSðQÞ. Clearly Sv 0S.
We claim that Sv 0T . If Sv ¼ T , then T HSðQÞV ðSðQÞ þ vÞÞ. Therefore for all
z A T

0 ¼ QðzÞ ¼ QvðzÞ ¼ Qðvþ zÞ ¼ QðvÞ þQðzÞ þ f ðv; zÞ:

Since QðvÞ ¼ QðzÞ ¼ 0, then f ðv; zÞ ¼ 0 for all z A T , which is absurd.
In a similar way we can prove the last assertion of the lemma. By way of contra-

diction, let Sv ¼ Sw for some v0w in Snf0g. Then Sv H ðSðQÞ þ vÞV ðSðQÞ þ wÞ.
Therefore for all z A Sv

0 ¼ QvðzÞ ¼ QwðzÞ:

Then Qðvþ zÞ ¼ Qðwþ zÞ implies

QðvÞ þQðzÞ þ f ðv; zÞ ¼ QðwÞ þQðzÞ þ f ðw; zÞ:
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As QðvÞ ¼ QðwÞ ¼ 0, so f ðvþ w; zÞ ¼ 0 for all z A Sv, which is absurd, as
vþ w A Snf0g. r

Theorem 7. Let V be a 2d-dimensional vector space over GFð2Þ, f a non-degenerate

alternating bilinear form and S ¼ fS0;S1; . . . ;Sqg a symplectic spread of V, where
q ¼ 2d and dd 3. Then the following statements hold.

1. The set O ¼ fS0;S1;S2 þ v2; . . . ;Sq þ vqg, where v2; . . . ; vq are, in a suitable order-

ing, the non-zero vectors of S0, is a line oval in the translation plane AðSÞ of order
q ¼ 2d defined by S.

2. The vector set S0 US1 U ðS2 þ v2ÞU � � �U ðSq þ vqÞ is the set of singular vectors of

a quadratic form Q which polarises to f .

3. O is completely regular.

Proof. Let Q be a quadratic form which polarises to f and whose group is Oþð2d; 2Þ.
Further, let SðQÞ be the set of singular vectors of Q. By Lemma 2, SðQÞ contains two
components of S; let them be S0 and S1. So S0 US1 JSðQÞ. By Lemma 3, SðQÞ
contains the subset

S0 US1 U ðS2 þ v2ÞU � � �U ðSq þ vqÞ;

where v2; . . . ; vq are, in a suitable ordering, the non-zero vectors of S0 and the sets
Sk þ vk, k ¼ 2; . . . ; q, are pairwise distinct. Then in the translation plane AðSÞ the
vector set SðQÞ contains qþ 1 distinct lines. Denote by O this set of lines. Since
jSðQÞj ¼ qðqþ 1Þ=2, then the number of points which are not on the lines of O is
t0 d qðq� 1Þ=2, since the vector space has q2 vectors. Because of Proposition 1, O is
a line oval whose nucleus is the line at infinity. Also, since the number of points which
are on its lines is qðqþ 1Þ=2, then

SðQÞ ¼ S0 US1 U ðS2 þ v2ÞU � � �U ðSq þ vqÞ:

This proves statements 1 and 2. Statement 3 follows from Proposition 2 and Theo-
rem 6. r

Theorems 7 and 6 prove Theorem 3 stated in the Introduction.
At this point we have a computational tool to describe line ovals when the trans-

lation plane is defined by a spread of a vector space over GFð2Þ. However, a trans-
lation plane of order qn is usually constructed from spreads of a 2n-dimensional
vector space over Fq ¼ GFðqÞ, with q > 2. Therefore it is useful to illustrate how
the methods developed during the proof of Theorem 6 can be applied to this
more common situation. So let V ¼ Vð2n; qÞ be a 2n-dimensional vector space over
Fq ¼ GFðqÞ, where q ¼ 2d , equipped with a non-degenerate alternating bilinear form
f and S ¼ fS0;S1; . . . ;Sqng a symplectic spread of V . Denote by AðSÞ the corre-
sponding translation plane of order qn. Fix two components of S, say S0 and S1 and
choose dual bases fv1; v2; . . . ; vng in S0 and fw1;w2; . . . ;wng in S1 so that
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f ððx; yÞ; ðx 0; y 0ÞÞ ¼ x>y 0 þ y>x 0;

where x; x 0; y; y 0 are vectors of Fn
q . A quadratic form Q which polarises to f and

whose group is Oþð2n; qÞ is

Qððx; yÞÞ ¼ x>y:

View the vector space Fn
q �Fn

q as a 2nd-dimensional vector space over F2. Let

Tr : Fq ! F2 be the trace map. As explained at the beginning of the section, using
the bilinear map f 0 ¼ Tr � f , the symplectic spread S gives rises to a symplectic spread
S 0 of Fnd

2 �Fnd
2 , such that the plane AðSÞ is identical to the plane AðS 0Þ. Because of

Theorem 7, the plane AðS 0Þ admits a completely regular line oval O 0, such that BðO 0Þ
is the set of singular vectors of the quadratic form Q 0 ¼ Tr �Q which polarises to f 0.
Regard the line oval O 0 as a line oval O of AðSÞ. Consequently, the points which are
on the lines of O are the vectors ðx; yÞ A Fn

q �Fn
q such that

TrðQðx; yÞÞ ¼ Trðx>yÞ ¼ 0:

The above equation represents the set of points BðOÞ.
Let M be the spread-set associated to S and B. Then

S ¼ fx ¼ 0gU fy ¼ Mx jM A Mg;

the matrices of M are symmetric and the line oval O is represented as

O ¼ fx ¼ 0gU fy ¼ Mxþ xM jM A Mg;

where the vector xM is determined by the condition

Tr½Qðx;Mxþ xMÞ� ¼ Tr½x>Mxþ x>xM � ¼ 0 for all x A Fn
q :

If x ¼ ðx1; . . . ; xnÞ>, xM ¼ ða1; . . . ; anÞ> and the symmetric matrix M has entries aij ,
i; j ¼ 1; . . . ; n, a calculation proves that

Tr
Xn
i¼1

ðaiix2
i þ aixiÞ

" #
¼ 0; for all xi A Fq:

Hence ai ¼ a2
d�1

ii , i ¼ 1; . . . ; n. We use the symbol
ffiffiffi
a

p
to denote a2

d�1
and reserve

now the symbol xM to denote the vector ð ffiffiffiffiffiffi
a11

p
; . . . ;

ffiffiffiffiffiffi
ann

p Þ>, where ða11; . . . ; annÞ is
the main diagonal of the matrix M.

With a similar construction as that in the proof of Theorem 6, we can prove that
the line oval O is completely regular writing explicitly its regular triples.

Denote by ðyÞ and ðMÞ, M A M, the points on the line at infinity of AðSÞ, which
correspond to the subspaces x ¼ 0 and y ¼ Mx, respectively.
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Theorem 8. The triple fy ¼ Mxþ r1; y ¼ Mxþ r2; y ¼ Mxþ r3g is ðMÞ-regular if

and only if r1 þ r2 þ r3 ¼ xM , where r1; r2; r3 are distinct vectors of Fn
q nfxMg. Also,

the triple fx ¼ r1; x ¼ r2; x ¼ r3g is ðyÞ-regular if and only if r1 þ r2 þ r3 ¼ 0, where
r1; r2; r3 are distinct vectors of Fn

q nf0g.

Proof. The proof is essentially similar to that in the proof of Theorem 6. For the sake
of completeness, we repeat it.

Consider the intersection between the line y ¼ Nxþ h and the lines of the first
triple, where N0M. We find the vectors

vk ¼ ððN þMÞ�1ðrk þ hÞ;MðN þMÞ�1ðrk þ hÞ þ rkÞ; k ¼ 1; 2; 3:

Assume r1 þ r2 þ r3 ¼ xM . Then

Tr½Qðv1Þ þQðv2Þ þQðv3Þ�

¼ Tr½h>ðN þMÞ�1
MðN þMÞ�1hþ h>ðN þMÞ�1xM

þ x>MðN þMÞ�1
MðN þMÞ�1xM þ x>MðN þMÞ�1xM �:

Since Tr½x>Mxþ x>xM � ¼ 0 for all x A Fn
q , putting in the above equation

ðN þMÞ�1h ¼ x and ðN þMÞ�1xM ¼ y, we get

Tr½Qðv1Þ þQðv2Þ þQðv3Þ�

¼ Trðx>Mxþ x>xMÞ þ Trðy>Myþ y>xMÞ ¼ 0:

Consequently, as the trace map is additive, if two of the vectors vk, k ¼ 1; 2; 3, are
not in BðOÞ then the third is in BðOÞ.

To prove the only if part of the theorem it su‰ces to note that the number of ðMÞ-
regular triples is ðqn � 1Þðqn � 2Þ=6, which is also the number of triples fr1; r2; r3g,
ri A Fn

q nfxMg, whose sum is xM .
The other case is similar. r

Examples. 1. The desarguesian plane AGð2; qÞ. Let f be the non-degenerate alternat-
ing bilinear form

f ððx; yÞ; ðx 0; y 0ÞÞ ¼ xy 0 þ yx 0; x; y; x 0; y 0 A Fq

with associated quadratic form Qððx; yÞÞ ¼ xy. The symplectic spread is

S ¼ fx ¼ 0gU fy ¼ mx j x A Fqg

and a completely regular line oval is

O ¼ fx ¼ 0gU fy ¼ mx þ
ffiffiffiffi
m

p
jm A Fqg:
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Since m 7! m2 is an automorphism of Fq, letting k2 ¼ m, we can write

O ¼ fx ¼ 0gU fy ¼ k2xþ k j k A Fqg:

O is a line conic.
2. The Lüneburg plane of order q2, q ¼ 22kþ1, see [6] and [8]. Let s be the auto-

morphism of Fq defined by a 7! a2
kþ1

. Then s2 ¼ 2 and sþ 1 and sþ 2 are auto-
morphisms of the cyclic group F�

q . Using the standard alternating bilinear form,
define the symplectic spread

S ¼ fx ¼ 0gU fy ¼ Ma;bx j a; b A Fqg

where x; y A F2
q and

Ma;b ¼
a as�1 þ b1þs�1

as�1 þ b1þs�1
b

 !
:

A completely regular line oval is

O ¼ fx ¼ 0gU fy ¼ Ma;bxþ ð
ffiffiffi
a

p
;
ffiffiffi
b

p
Þ> j a; b A Fqg:

4 Completely regular line ovals

This last section is devoted to the proof that if O is a completely regular line oval in a
translation plane of even order q ¼ 2d , then DðOÞGS1ð2d Þ. We will need some
known results about P-regular line ovals (see Definition 2 in the Introduction). Nota-
tion is as in Section 2.

Let Pq be a projective plane of even order q, Aq ¼ Pn
q the a‰ne plane deduced

from Pq by deleting the line n and L its set of a‰ne lines. Let O be a line oval with
nucleus n. For every line l A LnO, let L be the point lV n and define

Sl ¼ fm A LnO jm0 l and lV m A BðOÞgU ðFLnðOVFLÞÞ:

Note that l A Sl.

Result 1. The incidence structure HðOÞ whose set of points is LnO and whose blocks

are the subsets Sl, l A LnO, is a Hadamard symmetric design with parameters

v ¼ q2 � 1; k ¼ q2

2
� 1; l ¼ q2

4
� 1;

admitting the null polarity l 7! Sl.

The proof is straightforward.
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Suppose now that the order of the plane is greater than or equal to 8. Let P be
any point on n and o the unique line of OVFP. From now on we assume that O is a
P-regular line oval.

Result 2. F�
P ¼ FPnfng is a d-dimensional vector space over GFð2Þ. Such a structure

is determined as follows. Let x; y A F�
P with x0 y. Then define:

xþ x ¼ o; xþ o ¼ oþ x ¼ x; xþ y ¼ z;

where z is the third line of F�
P such that fx; y; zg is P-regular.

The dual proof is in [9], Theorem 3, where associativity of addition is proved.
Note that jF�

P j ¼ q and that the number of P-regular triples equals the number of
2-dimensional subspaces of F�

P . This number is ðq� 1Þðq� 2Þ=6.
The hyperplanes of F�

P , which are its additive subgroups of order q=2, can be
recovered from the sets Sl.

Lemma 4. For every a‰ne line l B OUFP, Sl VFP is the set of points of a hyperplane

of F�
P .

Proof. As jlVBðOÞj ¼ q=2, so jSl VFPj ¼ q=2. Therefore it su‰ces to prove that
Sl VFP is a subgroup ofF�

P . Now if x; y A Sl VFP, then also z ¼ xþ y is inSl VFP,
since fx; y; zg is a P-regular triple. r

It follows that for every l;m A LnðOUFPÞ with l0m,

jSl VSm VFPj ¼
q

2
if Sl VFP ¼ Sm VFP

q

4
otherwise.

(

Lemma 5. Let l A LnðOUFPÞ. Then on each point R of l with R0 lV o there is

exactly one line m0 l such that Sl VFP ¼ Sm VFP.

Proof. Let F0
R ¼ FRnfn;PR;OVFRg. Note that jF0

R j ¼ q� 1 if R B BðOÞ, while
jF0

R j ¼ q� 3 if R A BðOÞ.
Let Hl; r ¼ jSl VSr VFPj, r A F0

R . Then

X
r AF0

R

Hl; r ¼
q2

4
if R B BðOÞ

q2

4
þ 2q� 5

q

2
if R A BðOÞ:

8<
: ð�Þ

Relation ð�Þ is obtained counting in two di¤erent ways the pairs ðz; rÞ A
ðSl VFPÞ �F0

R such that zV r A BðOÞ.
Let k be the number of lines r A F0

R such that Sl VFP ¼ Sr VFP. If R B BðOÞ,
from ð�Þ
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X
r AF0

R

Hl; r ¼ k
q

2
þ ðq� 1� kÞ q

4
¼ q2

4
:

So k ¼ 1. If R A BðOÞ, again from ð�Þ we get

X
r AF0

R

Hl; r ¼ k
q

2
þ ðq� 3� kÞ q

4
¼ q2

4
þ 2q� 5

q

2
:

Hence k ¼ 1. r

Using Lemma 5 it is easy to prove that the equivalence relation on LnðFP UOÞ

l@m if Sl VFP ¼ Sm VFP

has q� 1 classes, each class has q elements and that the lines of a class plus the line o
constitute a line oval. Therefore the P-regular line oval O determines q� 1 other line
ovals Oi, i ¼ 1; . . . ; q� 1, all with nucleus n, such that

1. OVOi ¼ OVFP ¼ fog, i ¼ 1; . . . ; q� 1;

2. l;m A Oinfog if and only if Sl VFP ¼ Sm VFP.

Definition 5. The set of line ovals fO;Oigi¼1;...;q�1, as above determined, is called the
P-bundle of Aq.

Note that the q� 1 hyperplanes of F�
P are determined by the sets Sli VFP, where

li A Oi, i ¼ 1; . . . ; q� 1.
A property which characterizes the line ovals Oi, i ¼ 1; . . . ; q� 1, is given by the

following lemma.

Lemma 6. Let O 0 be a line oval such that O 0 VO ¼ OVFP ¼ fog. Then O 0 is one of the
line ovals Oi if and only if xVBðOÞ ¼ xVBðO 0Þ for every line x A F�

P nfog such that

xVBðOÞVBðO 0Þ0q.

Proof. Let O 0 ¼ Oi, some i. If x A F�
P nfog and R A xVBðOÞVBðOiÞ, then there is a

line l of Oi such that lV x ¼ R. Therefore x A Sl VFP. Because of property 2 above,
x A Sm VFP for every m A Oi. Using the null polarity of the 2-design HðOÞ, m A Sx

for every m A Oi. Therefore xVBðOiÞJ xVBðOÞ. As jxVBðOiÞj ¼ jxVBðOÞj, so
xVBðOÞ ¼ xVBðOiÞ.

To prove the converse, it su‰ces to show that if l and m are in O 0 then
Sl VFP ¼ Sm VFP. By way of contradiction, let lV x A BðOÞ, but mV x B BðOÞ,
some x A F�

P nfog. Since lV x A BðOÞVBðO 0Þ, then xVBðOÞ ¼ xVBðO 0Þ. Therefore
mV x B BðO 0Þ, a contradiction. r

From the above lemma we deduce that the line oval Oi, i ¼ 1; . . . ; q� 1, is P-regular
and has the same P-regular triples as O.
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Proof. Let fx; y; zg be a P-regular triple for O. Let l be a line such that lV x B BðOiÞ
and lV y B BðOiÞ. We claim that lV z A BðOiÞ. We treat the cases lV x A BðOÞ and
lV y A BðOÞ, the others being similar.

Since fx; y; zg is P-regular for O and lV x A BðOÞ, lV y A BðOÞ, then lV z A BðOÞ
and CðSxÞVCðSyÞHSz Because of Lemma 6, from lV x B BðOiÞ and lV y B BðOiÞ

Oi HCðSxÞ; Oi HCðSyÞ

follows. Therefore Oi HCðSxÞVCðSyÞHSz. Thus mV z A BðOÞ; whence lV z A
BðOiÞ. r

Let now O be a line oval such that OVO ¼ OVFP ¼ fog. If O is P-regular and has
the same P-regular triples as O, then O is one of the Oi, i ¼ 1; . . . ; q� 1. To prove
the assertion, first note that O and O induce on F�

P the same additive structure. Let
x A F�

P . Denote by I1; . . . ; Iq=2 the q=2 hyperplanes of F�
P which contain x. As each

Ij can be realized as Slj VFP, where lj is any a‰ne line of FQ with Q0P, so
lj V x A BðOÞ if and only if lj V x A BðOÞ. Therefore xVBðOÞ ¼ xVBðOÞ. Because of
Lemma 6, O is one of the line ovals Oi, i ¼ 1; . . . ; q� 1.

We have proved

Result 3. (see also [10], Theorem 1 and Lemma 3) Let O be a P-regular line oval. Then
there exist q� 1 other line ovals Oi, i ¼ 1; . . . ; q� 1, all with nucleus n, such that

1. OVOi ¼ OVFP ¼ fog, i ¼ 1; . . . ; q� 1;

2. l;m A Oinfog if and only if Sl VFP ¼ Sm VFP.

Moreover, each line oval Oi, i ¼ 1; . . . ; q� 1, is P-regular, has the same P-regular tri-

ples as O and any other P-regular line oval having the same P-regular triples as O is one

of the Oi, i ¼ 1; . . . ; q� 1.

We apply now Result 3 to the case where Aq ¼ Pn
q is a translation plane of even

order q ¼ 2d with translation group T and O is a completely regular line oval with
respect to the line at infinity n. If P is a point on n, denote by TP the group of all
translations with centre P.

Lemma 7. Let g A T . Then Og is a completely regular line oval and if g A TP then O and

Og have the same P-regular triples.

Proof. First of all note that Og is a line oval with nucleus n. Also, BðOÞg ¼ BðOgÞ.
For, if R A BðOÞ, then there is a line r of O such that R A r. Therefore Rg A BðOgÞ,
and so BðOÞg JBðOgÞ. Since jBðOÞgj ¼ jBðOgÞj, then BðOÞg ¼ BðOgÞ follows.

Let fx; y; zg be any P-regular triple for O, where P is any point on n. We prove
that fxg; yg; zgg is a P-regular triple for Og. Let l be any line not on P and assume
that lV xg and lV yg are not in BðOgÞ. If lV zg B BðOgÞ, then the points lg V x,
lg V y, lg V z are not in BðOÞ, which is absurd, as fx; y; zg is a P-regular triple for O.

In particular, if g A TP, then fxg; yg; zgg ¼ fx; y; zg. r
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Because of this lemma and Result 3 above the P-bundle defined by O is
fOg j g A TPg. We fix the following notation:

fS0; . . . ;Sqg is the set of points of n;

Ti is the group of all translations with centre Si, i ¼ 0; 1; . . . ; q;

Fi is the pencil of lines thought Si, i ¼ 0; 1; . . . ; q;

oi is the line OVFi, i ¼ 0; 1; . . . ; q;

F�
i ¼ Finfoig, i ¼ 0; 1; . . . ; q.

Recall that F�
i is a d-dimensional vector space over GFð2Þ and that the Si-bundle

is fOg j g A Tig.

Lemma 8. Let I ¼ foj ;m1; . . . ;mq=2�1g be any hyperplane of the vector spaceF�
j . Then

there is a subgroup H of Ti, with i0 j, of order q=2 which stabilizes I. Moreover, also
the group HTj of order q

2=2 stabilizes I.

Proof. Let l be a line of Finfoi; ng, such that Sl VFj ¼ I . Then the points lVmk,

k ¼ 1; . . . ; q=2� 1, are in BðOÞ. Let fO;Oh1 ; . . . ;Ohq�1g be the Si-bundle, where
f1; h1; . . . ; hq�1g ¼ Ti. Each of the lines mk, k ¼ 1; . . . ; q=2� 1, is on one of the line
ovals of the Si-bundle. It is not restrictive to assume that mk A O

hk , k ¼ 1; . . . ; q=2� 1.
So let H ¼ f1; h1; . . . ; hq=2�1g. From Lemma 6, lVmk A BðOÞVBðOhk Þ implies
lVBðOÞ ¼ lVBðOhk Þ for every hk A H. Therefore for any hk and hr in H

ðlVBðOhk ÞÞhr ¼ lVBðOhkhrÞ ¼ lVBðOÞ:

Hence H is a subgroup of Ti which stabilizes I .
Clearly, also HTj stabilizes I and has order q2=2, as H VTj ¼ f1g. r

The elementary abelian 2-group T is sharply transitive on the points of Aq. Fix a
point P0 of Aq. Then for any point P0S0; . . . ;Sq there is exactly one g A T such that
P ¼ P

g
0 . If P ¼ P

g
0 and Q ¼ Ph

0 , then addition of points is meaningful: PþQ :¼ P
gh
0 .

In this way the set of points of Aq becomes an elementary abelian 2-group G of order
q2 isomorphic to T , whose identity element is the point P0.

The design DðOÞ has been defined in Section 2.

Lemma 9. For any distinct blocks b and c of DðOÞ, bhc is a left coset of a subgroup

of G.

Proof. First we consider the case b ¼ BðOÞ and c ¼ BðOgÞ, g A TS, where S is one of
the points S0;S1; . . . ;Sq and TS is the group of all translations with centre S. Let
FS VO ¼ fog. If l A Ognfog, then Sl VFS is a hyperplane of F�

S and Sl VFS ¼
Sm VFS for every l;m A Ognfog. Let I ¼ Sl VFS ¼ fo; z1; . . . ; zq=2�1g. The remain-
ing a‰ne lines of FS, say z1; . . . ; zq=2, share the following property:
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any point on zi; i ¼ 1; . . . ; q=2; is either in BðOÞ or in BðOgÞ:

Thus BðOÞhBðOgÞ is the set of points on the lines z1; . . . ; zq=2. These points are q
2=2

in number.
Let P0 A BðOÞhBðOgÞ (P0 is the identity element of G). Then P0 is on one

of the lines z1; . . . ; zq=2, say z1. If h A TS, then Ph
0 is a point on z1. Therefore

Ph
0 A BðOÞhBðOgÞ for any h A TS. By Lemma 8, let H be a subgroup of Ti, where

Si 0S, of order q=2 which stabilizes I and its complement fz1; . . . ; zq=2g. Then HTS

stabilizes I and its complement. So BðOÞhBðOgÞ consists of the points fPhigj
0 j hi A H;

gj A TSg, which is a subgroup of G of order q2=2.
Next let us examine the case where P0 B BðOÞhBðOgÞ. Then P0 is in BðOÞVBðOgÞ.

So P0 is on one of the lines fo; z1; . . . ; zq=2�1g. Using the subgroup H as determined
above, we have that

K ¼ fPhigj
0 j hi A H; gj A TSg ¼ ðBðOÞV ðBðOgÞÞU ðCBðOÞVCBðOgÞÞ

is a subgroup of G. Therefore if P is any point on one of the lines z1; . . . ; zq=2, then
BðOÞhBðOgÞ ¼ Pþ K is a left coset of a subgroup of G.

The general case follows from the above ones. It su‰ces to note that if b and
c ¼ BðOhÞ are two distinct blocks of DðOÞ, then b ¼ BðOgÞ, where g A T . Since
BðOÞhBðOhgÞ is a left coset of a subgroup of G the same holds for BðOgÞhBðOhÞ. r

Theorem 9. Let Aq be a translation plane of even order q ¼ 2d with dd 3 and O a

completely regular line oval. Then DðOÞGS1ð2d Þ.

Proof. The proof follows from the above lemma and Theorem 4. r

Theorems 9 and 6 prove Theorem 2 stated in the Introduction.

Acknowledgments. I am indebted to W. M. Kantor who focused my attention on his
paper [3]. Without his suggestion and a useful correspondence this paper would not
have been written.
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