Symplectic translation planes and line ovals

Antonio Maschietti
(Communicated by G. Korchmáros)

Abstract

A symplectic spread of a $2 n$-dimensional vector space V over $\operatorname{GF}(q)$ is a set of $q^{n}+1$ totally isotropic n-subspaces inducing a partition of the points of the underlying projective space. The corresponding translation plane is called symplectic. We prove that a translation plane of even order is symplectic if and only if it admits a completely regular line oval. Also, a geometric characterization of completely regular line ovals, related to certain symmetric designs $\mathscr{S}^{1}(2 d)$, is given. These results give a complete solution to a problem set by W. M. Kantor in apparently different situations.

Key words. Translation plane, symplectic spread, line oval, regular triple, Lüneburg plane, symmetric design.

1 Introduction

Let Π_{q} be a finite projective plane of order q. An oval is a set of $q+1$ points, no three of which are collinear. Dually, a line oval is a set of $q+1$ lines no three of which are concurrent. Any line of the plane meets the oval \mathcal{O} at either 0,1 or 2 points and is called exterior, tangent or secant, respectively. For an account on ovals the reader is referred to [1], [2] and [7]. If the the order of the plane is even all the tangent lines to the oval \mathcal{O} concur at the same point N, called the nucleus (or the knot) of \mathcal{O}. The set $\mathcal{O} \cup\{N\}$ becomes a hyperoval, that is a set of $q+2$ points, no three of which are collinear. A regular hyperoval is a conic plus its nucleus in a desarguesian plane. If \mathcal{O} is a line oval, then there is exactly one line n such that on each of its points there is only one line of \mathcal{O}. This line n is called the (dual) nucleus of \mathcal{O}. The $(q+2)$-set $\mathcal{O} \cup\{n\}$ is a line hyperoval or dual hyperoval.

Let \mathscr{A}_{q} be a translation plane of even order $q=2^{d}$ and \mathcal{O} a line oval whose nucleus is the line at infinity. Let T be the translation group of \mathscr{A}_{q} and \boldsymbol{A} its set of points. Identifying the elements of \boldsymbol{A} with those of T and using addition as the operation on \boldsymbol{A}, define

$$
B(\mathcal{O})=\{P \in \boldsymbol{A} \mid P \text { is on a line of } \mathcal{O}\} .
$$

In [3], Theorem 7, it is proved that $B(\mathcal{O})$ is a difference set in the abelian group \boldsymbol{A}. The corresponding symmetric design $\mathscr{D}(\mathcal{O})$ has parameters

$$
v=q^{2}, \quad k=\frac{q^{2}}{2}+\frac{q}{2}, \quad \lambda=\frac{q^{2}}{4}+\frac{q}{2} .
$$

This design has the same parameters as certain designs $\mathscr{S}^{1}(2 d)$, see [3] and also Section 2. In two cases Kantor proved, see [3], Theorems 8 and 9, that $\mathscr{D}(\mathcal{O})$ is isomorphic to $\mathscr{S}^{1}(2 d)$, namely

1. \mathscr{A}_{q} is desarguesian and \mathcal{O} is a line conic (i.e. \mathcal{O} becomes a conic in the dual of the projectivization of \mathscr{A}_{q});
2. \mathscr{A}_{q} is the Lüneburg plane of order q, where $q=2^{2 d}$ with $d>1$ odd and \mathcal{O} is a suitable line oval.

Such a line oval in the Lüneburg plane has the property of being stabilised by a collineation group isomorphic to the Suzuki group $\mathrm{Sz}\left(2^{d}\right)$ acting 2-transitively on its lines. Its existence was first proved in [3] by methods related to the symmetric design $\mathscr{S}^{1}(2 d)$. There is also a direct construction, based on analytical methods, see [6].

Quite naturally W. M. Kantor raised the problem of finding out which translation planes were related to $\mathscr{S}^{1}(2 d)$ and which geometric conditions on a line oval of a translation plane of order 2^{d} were necessary and sufficient in order that $\mathscr{D}(\mathcal{O})$ be isomorphic to $\mathscr{S}^{1}(2 d)$.

The aim of this paper is to give a complete solution to the above problem. To get such a solution results about P-regular line ovals are used. In [9] and [10] ovals admitting a strongly regular tangent line are investigated. Here we need analogous results in a dual setting. So, we recall some basic definitions.

Definition 1. Let \mathcal{O} be an oval with nucleus N in Π_{q}, where $q \geqslant 8$ is even. A tangent line s to \mathcal{O} is strongly regular if for every pair of distinct points $X, Y \in s \backslash((s \cap \mathcal{O}) \cup\{N\})$ there is a third point $Z \in s \backslash((s \cap \mathcal{O}) \cup\{N\})$ such that for every point $P \neq N$ of Π_{q} at least one of the lines $P X, P Y, P Z$ is a secant line. Each non-ordered triple of points with the above property is called s-regular.

The dual definition is as follows. Let \mathcal{O} be a line oval of Π_{q}, q even, and n its nucleus. Denote by $\Pi_{q}^{n}=\mathscr{A}_{q}$ the affine plane deduced by Π_{q} by deleting the line n and by \boldsymbol{A} the set of points of \mathscr{A}_{q}. As above, set

$$
B(\mathcal{O})=\{P \in A \mid P \text { is on a line of } \mathcal{O}\}
$$

Let \mathscr{F}_{P} denote the pencil of lines on P, where P is a point of Π_{q}.
Definition 2. Let \mathcal{O} be a line oval with nucleus n and P a point on $n . \mathcal{O}$ is called P regular if for any pair of distinct affine lines $x, y \in \mathscr{F}_{P} \backslash\left(\mathscr{F}_{P} \cap \mathcal{O}\right)$ there is a third affine line $z \in \mathscr{\mathscr { F }}_{P} \backslash\left(\mathscr{\mathscr { F }}_{P} \cap \mathcal{O}\right)$ such that for every affine line ℓ not on P at least one of the points $\ell \cap x, \ell \cap y$ or $\ell \cap z$ belongs to $B(\mathcal{O})$. Each non-ordered triple of lines sharing the above property is called P-regular.

In [9], Theorem 3, it is proved that if the oval \mathcal{O} has a strongly regular tangent line, then the order q of the plane is a power of 2 . By duality the same result holds in the case of a P-regular line oval.

Known examples of ovals with a strongly regular tangent line are the translation ovals, see [9] and [10]. By duality we obtain examples of P-regular line ovals.

Non-degenerate conics are characterized by the following result, see [10], Corollary 1.

Theorem 1. In $\operatorname{PG}\left(2,2^{d}\right)$, where $d \geqslant 3$, an oval \mathcal{O} is a non-degenerate conic if and only if \mathcal{O} admits two distinct strongly regular tangent lines.

This shows that a non-degenerate conic admits $q+1$ strongly regular tangent lines.
Definition 3. An oval \mathcal{O} with nucleus N is called completely N-regular if every line on $N \in \mathcal{O}$ is strongly regular.

We need the dual definition.

Definition 4. A line oval \mathcal{O} is called completely regular with respect to its nucleus n if \mathcal{O} is P-regular for every point P on n.

Our main results are summarized in the following theorems.
Theorem 2. Let \mathscr{A}_{q} be a translation plane of even order $q=2^{d}$, where $d \geqslant 3$, and \mathcal{O} a line oval whose nucleus is the line at infinity n. Then $\mathscr{D}(\mathcal{O})$ is isomorphic to $\mathscr{S}^{1}(2 d)$ if and only if \mathcal{O} is completely regular with respect to the line n.

In a $2 n$-dimensional vector space over $\operatorname{GF}(q)$, equipped with a non-singular alternating bilinear form, a symplectic spread is a family of $q^{n}+1$ totally isotropic n subspaces which induces a partition of the points of the underlying projective space.

Theorem 3. Let \mathscr{A}_{q} be a translation plane of even order $q=2^{d}$, where $d \geqslant 3$. Then \mathscr{A}_{q} admits a completely regular line oval with respect to the line at infinity if and only if \mathscr{A}_{q} is defined by a symplectic spread of a 2d-dimensional vector space over $\operatorname{GF}(2)$.

In particular, the above theorem states that any symplectic translation plane of even order admits a line oval, a well known result, see [12]. There are many examples of symplectic translation planes, see [4] and [5]. So there are many examples of completely regular line ovals. Note that the above theorem answers the question of finding an internal criterion for a translation plane to be symplectic, see [5], page 318.

The paper is organized as follows. In Section 2 we fix some notation and introduce the designs $\mathscr{D}(\mathcal{O})$ and $\mathscr{S}^{1}(2 d)$. Section 3 is devoted to prove that the only translation planes admitting a completely regular line oval are the symplectic ones. This is the content of Theorem 3 above. Also, a method to determine explicitly the regular triples of a completely regular line oval is described.

Finally in Section 4 we prove that, for a completely regular line oval \mathcal{O} in a translation plane, $\mathscr{D}(\mathcal{O}) \cong \mathscr{S}^{1}(2 d)$ holds. This result and those of Section 3 will provide a proof of Theorem 2.

2 Preliminary results

We will use fairly standard notation. In particular, dealing with planes or symmetric designs, points will be denoted by P, Q, \ldots, X, Y, Z, lines by $\ell, m, \ldots, r, s, \ldots, x, y, z$ and blocks by $\boldsymbol{a}, \boldsymbol{b}, \ldots, \boldsymbol{x}$. The symbol \mathscr{F}_{P} will denote the pencil of lines of a projective plane through the point P. Sometimes the line through two distinct points P and Q will be denoted by $P Q$.

If T is a finite set, then $|T|$ denotes the size of $T, \mathscr{C} T$ the complement of T and $T \backslash S$ the set of elements of T not in S. Finally, if $h: A \rightarrow B$ is a map between the sets A and B, then P^{h} is the image under h of the element $P \in A$ (in some cases also the symbol $h(P)$ is used).

Let Π_{q} be a projective plane of even order q, \mathcal{O} a line oval with nucleus n and $\mathscr{A}_{q}=\Pi_{q}^{n}$ the affine plane deduced from Π_{q} by deleting the line n. Let \mathscr{L} be its set of affine lines. Denote by $B(\mathcal{O})$ the set of affine points which are on the lines of \mathcal{O} and by $\mathscr{C} B(\mathcal{O})$ its affine complement. It is easy to prove that

$$
|B(\mathcal{O})|=\frac{q(q+1)}{2}, \quad|\mathscr{C} B(\mathcal{O})|=\frac{q(q-1)}{2}
$$

and if $R \in B(\mathcal{O})$ then there are two lines of \mathcal{O} through R. Moreover, if $\ell \notin \mathcal{O}$ is any affine line then

$$
|\ell \cap B(\mathcal{O})|=|\ell \cap \mathscr{C} B(\mathcal{O})|=\frac{q}{2}
$$

The following proposition is a useful criterion to decide if a set of $q+2$ lines of Π_{q} is a line hyperoval.

Proposition 1. Let Ω be a set of $q+2$ lines of Π_{q}. Then Ω is a line hyperoval if and only if the number of points which are not on the lines of Ω is greater than or equal to $q(q-1) / 2$.

Proof. (See also [11], Theorem 3) Let $k \geqslant 2$ be the maximum number of concurrent lines of Ω and t_{s} the number of points which are on s lines of $\Omega, s=0,1, \ldots, k$. By a standard counting argument

$$
\begin{gather*}
\sum_{s=0}^{k} t_{s}=q^{2}+q+1 \tag{1}\\
\sum_{s=1}^{k} s t_{s}=(q+1)(q+2) \tag{2}
\end{gather*}
$$

$$
\begin{equation*}
\sum_{s=2}^{k} s(s-1) t_{s}=(q+2)(q+1) \tag{3}
\end{equation*}
$$

Subtracting Equation (3) from (2)

$$
\begin{equation*}
t_{1}-\sum_{s=3}^{k} s(s-2) t_{s}=0 \tag{4}
\end{equation*}
$$

Since $t_{0} \geqslant q(q-1) / 2$, elimination of t_{1} from (1) and (4) gives

$$
\begin{equation*}
t_{2}+\sum_{s=3}^{k}\left(s^{2}-2 s+1\right) t_{s} \leqslant q^{2}+q+1-\frac{q(q-1)}{2} \tag{5}
\end{equation*}
$$

From (3)

$$
\begin{equation*}
2 t_{2}=(q+2)(q+1)-\sum_{s=3}^{k} s(s-1) t_{s} \tag{6}
\end{equation*}
$$

From (5) and (6)

$$
\sum_{s=3}^{k}\left(s^{2}-3 s+2\right) t_{s} \leqslant 0
$$

As $s^{2}-3 s+2>0$ for any $s \geqslant 3$, we infer $t_{s}=0$ for any $s \geqslant 3$. Therefore $k \leqslant 2$, that is Ω is a line hyperoval. The converse is trivial.

For the theory of translation planes we refer to [8]. Let \mathscr{A}_{q} be a translation plane of even order $q=2^{d}$, where $d \geqslant 3, T$ its translation group and \mathcal{O} a line oval with nucleus the line at infinity n. Note that \mathcal{O}^{g} is a line oval with nucleus n for every $g \in T$. Also, if \mathcal{O}^{g} and $\mathcal{O}^{h}, g, h \in T$, are distinct line ovals, then they have exactly one line in common.

For every $g \in T$, let $B\left(\mathcal{O}^{g}\right)$ be the set of affine points which are on the lines of \mathcal{O}^{g}. Denote by $\mathscr{D}(\mathcal{O})$ the incidence structure whose points are the points of \mathscr{A}_{q} and whose blocks are the sets $B\left(\mathcal{O}^{g}\right), g \in T$.

Theorem 4. $\mathscr{D}(\mathcal{O})$ is a symmetric design with parameters

$$
v=q^{2}, \quad k=\frac{q(q+1)}{2}, \quad \lambda=\frac{q^{2}}{4}+\frac{q}{2} .
$$

Proof. (see also [3], Theorem 7 (i)) The number of points is q^{2} and equals the number of blocks. Each block contains $q(q+1) / 2$ points, which is the total number of points
which are on the lines of a line oval. It remains to prove that any two distinct blocks have $q^{2} / 4+q / 2$ common points. Consider any two distinct line ovals \mathcal{O}^{g} and \mathcal{O}^{h}. Let s be the unique line they have in common and S_{m} the point $n \cap s$. For any line ℓ of the plane not in \mathcal{O}^{h} there are $q / 2$ points of $B\left(\mathcal{O}^{h}\right)$ which belong to ℓ, one of which is $\ell \cap s$. Let ℓ vary on $\mathcal{O}^{g} \backslash\{s\}$. Since a point on $\ell \cap B\left(\mathcal{O}^{g}\right)$ not on s is also determined by another line of \mathcal{O}^{g}, we have $q / 2(q / 2-1)$ common points. To these we add the q points on s (excluding S_{m}) to obtain $q^{2} / 4+q / 2$ common points.

We introduce now another symmetric design, having the same parameters as $\mathscr{D}(\mathcal{O})$ and investigated in [3]. So our reference is [3], with only some minor change in notation. We use only one type of orthogonal group of a $2 d$-dimensional vector space over $\mathrm{GF}(2)$, namely $O^{+}(2 d, 2)$, which is the linear group preserving a non-degenerate quadratic form with index d. The symplectic group of a $2 d$-dimensional vector space over $\operatorname{GF}(2)$ will be denoted by $\operatorname{Sp}(2 d, 2)$.

If S and T are sets of points of a design, then $S \triangle T$ is the symmetric difference $(S \cup T) \backslash(S \cap T)$.

Set

$$
H(2)=\left(\begin{array}{cccc}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{array}\right)
$$

For each positive integer d, let $H(2 d)$ be the tensor product of d copies of $H(2)$. Rows and columns of $H(2 d)$ can be regarded as the points and blocks of a symmetric design $\mathscr{S}^{1}(2 d)$, a point being on a block if and only if the corresponding entry is 1 . $\mathscr{S}^{1}(2 d)$ has parameters

$$
v=2^{2 d}, \quad k=2^{2 d-1}+2^{d-1}, \quad \lambda=2^{2 d-2}+2^{d-1} .
$$

Theorem 5. Let \mathscr{D} be a symmetric design admitting a sharply point-transitive automorphism group T. Define addition of points so that T is the set of right translations of the group G of the points. Then the following statements are equivalent.

1. \mathscr{D} is isomorphic to $\mathscr{S}^{1}(2 d)$ for some d.
2. $\boldsymbol{b} \triangle \boldsymbol{c}$ is a left coset of a subgroup of G whenever \boldsymbol{b} and \boldsymbol{c} are distinct blocks.
3. $\mathscr{C}(\boldsymbol{b} \triangle \boldsymbol{c})$ is a left coset of a subgroup of G whenever \boldsymbol{b} and \boldsymbol{c} are distinct blocks.

Proof. See [3], Theorem 2.
In [3], Section 4, the full automorphism group \mathscr{G} of $\mathscr{S}^{1}(2 d)$ is completely determined: it is a semidirect product of the translation group T of the $2 d$-dimensional affine geometry over $\operatorname{GF}(2), \operatorname{AG}(2 d, 2)$, with $\operatorname{Sp}(2 d, 2)$. Moreover, if \boldsymbol{x} is a block, then $\mathscr{G}_{\boldsymbol{x}}$ is isomorphic to $\operatorname{Sp}(2 d, 2)$ and is 2-transitive on \boldsymbol{x} and $\mathscr{C} \boldsymbol{x}$. Finally, if $P \in \boldsymbol{x}$ then $\mathscr{G}_{P x}$ is $O^{+}(2 d, 2)$.

It follows that identifying the points of $\mathscr{S}^{1}(2 d)$ with the vectors of a $2 d$-dimensional vector space V over $\mathrm{GF}(2)$ there exists a quadratic form Q with group $O^{+}(2 d, 2)$ such that \boldsymbol{x} is the set of singular vectors of Q (a vector v is a singular vector of Q if $Q(v)=0)$. Therefore $\mathscr{S}^{1}(2 d)$ can be constructed as follows.

Proposition 2. Let V be a $2 d$-dimensional vector space over $\mathrm{GF}(2)$ and Q a nondegenerate quadratic form on V whose group is $O^{+}(2 d, 2)$. Let $S(Q)$ be the set of singular vectors of Q. Then the points and blocks of $\mathscr{S}^{1}(2 d)$ are the vectors of V and the translates $S(Q)+v, v \in V$.

Proof. See [3], Corollary 3.

3 Symplectic translation planes

Let $V=V(2 n, q)$ be a $2 n$-dimensional vector space over $\mathbb{F}_{q}=\operatorname{GF}(q)$. Vectors will be denoted by v, w, \ldots, z, subspaces by S, T, U, \ldots, X, Y. A spread of V is a family Σ of $q^{n}+1 n$-dimensional subspaces of V any two of which have in common the zero vector only. A symplectic spread of V is a spread which consists of totally isotropic subspaces with respect to a non-degenerate alternating bilinear form f.

Let $\Sigma=\left\{S_{0}, S_{1}, \ldots, S_{q^{n}}\right\}$ be a spread of V and $\mathscr{A}(\Sigma)$ the corresponding translation plane of order q^{n}, see [8]. If T is its translation group, then the points of $\mathscr{A}(\Sigma)$ are the vectors of V and the lines are the translates of the components of Σ. A translation plane defined by a symplectic spread is said to be symplectic.

Fix two distinct component of Σ, say S_{0} and S_{1}. Then $V=S_{0} \oplus S_{1}$. Choose bases $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in S_{0} and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ in S_{1}, so that $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}\right\}$ is a basis of V. The subspaces S_{0} and S_{1} are identified with \mathbb{F}_{q}^{n} and V with $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$. Vectors of \mathbb{F}_{q}^{n} are identified with $n \times 1$ matrices, represented by symbols like $\boldsymbol{x}, \boldsymbol{y}, \ldots$.

With respect to the basis \mathscr{B}, the spread Σ determines a set \mathscr{M} of $n \times n$ matrices over \mathbb{F}_{q} such that (see [8])

1. $|\mathscr{M}|=q^{n}$ and $O \in \mathscr{M}$
2. if $A, B \in \mathscr{M}$ and $A \neq B$ then $A-B$ is non-singular
3. $\mathscr{M} \backslash\{O\}$ acts sharply transitively on $\mathbb{F}_{q}{ }^{n} \backslash\{\mathbf{0}\}$.

The set \mathscr{M} is called the spread-set associated with Σ. With respect to \mathscr{M} and the basis \mathscr{B}

$$
\Sigma=\{\boldsymbol{x}=\mathbf{0}\} \cup\{\boldsymbol{y}=M \boldsymbol{x} \mid M \in \mathscr{M}\} .
$$

Note that we write $\boldsymbol{y}=M \boldsymbol{x}$ to denote the subspace $\left\{(\boldsymbol{x}, M \boldsymbol{x}) \mid \boldsymbol{x} \in \mathbb{F}_{q}^{n}\right\}$.
From now on we assume that q is a power of $2, q=2^{d}$. Let $\Sigma=\left\{S_{0}, S_{1}, \ldots, S_{q^{n}}\right\}$ be a symplectic spread with respect to a non-degenerate alternating bilinear form f. Then the bases in S_{0} and S_{1} can be chosen so that $f\left(v_{i}, w_{j}\right)=\delta_{i j}$, where $\delta_{i j}$ is the symbol of Kronecker and $i, j=1, \ldots, n$. Such bases are called dual. Therefore in the basis $\mathscr{B}=\left\{v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{n}\right\}$ of V, f is represented by the matrix

$$
\left(\begin{array}{ll}
O & I \\
I & O
\end{array}\right)
$$

where O and I denote the $n \times n$ zero and identity matrices. Then

$$
f\left((\boldsymbol{x}, \boldsymbol{y}),\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)\right)=\boldsymbol{x}^{\top} \boldsymbol{y}^{\prime}+\boldsymbol{y}^{\top} \boldsymbol{x}^{\prime}
$$

where $\boldsymbol{x}, \boldsymbol{x}^{\prime}, \boldsymbol{y}, \boldsymbol{y}^{\prime}$ are vectors of \mathbb{F}_{2}^{n}, the symbol \top denotes transposition and the product is the ordinary product between matrices. A quadratic form Q which polarises to f (i.e. $Q(v+w)=Q(v)+Q(w)+f(v, w)$ for $v, w \in V)$ is

$$
Q((\boldsymbol{x}, \boldsymbol{y}))=\boldsymbol{x}^{\top} \boldsymbol{y}
$$

With respect to this basis the associated spread-set \mathscr{M} consists of symmetric matrices. For, if $\boldsymbol{y}=M \boldsymbol{x}$ is a component of Σ, then

$$
f\left((\boldsymbol{x}, M \boldsymbol{x}),\left(\boldsymbol{x}^{\prime}, M \boldsymbol{x}^{\prime}\right)\right)=0
$$

for every $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{F}_{q}^{n}$ if and only if $M=M^{\top}$.
The vector space $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$ can be viewed as a $2 n d$-dimensional vector space over \mathbb{F}_{2}. Let $\operatorname{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{2}$ be the trace map: $\operatorname{Tr}(x)=\sum_{i=0}^{d-1} x^{2^{i}}$. Then the bilinear map $f^{\prime}=\operatorname{Tr} \circ f$ is a non-degenerate alternating bilinear form on $\mathbb{F}_{2}^{n d} \times \mathbb{F}_{2}^{\text {nd }}$ and $Q^{\prime}=\operatorname{Tr} \circ Q$ is a quadratic form which polarises to f^{\prime}. The symplectic spread Σ gives rises to a symplectic spread Σ^{\prime} of $\mathbb{F}_{2}^{n d} \times \mathbb{F}_{2}^{n d}$, such that the plane $\mathscr{A}(\Sigma)$ is identical to the plane $\mathscr{A}\left(\Sigma^{\prime}\right)$, see also [5].

The definition of completely regular line oval is in the Introduction, Definition 4.
Theorem 6. Let \mathscr{A}_{q} be a translation plane of even order $q=2^{d}$ with $d \geqslant 3$ and \mathcal{O} a line oval with nucleus the line at infinity such that $\mathscr{D}(\mathcal{O}) \cong \mathscr{S}^{1}(2 d)$. Then

1. \mathscr{A}_{q} is a symplectic translation plane
2. \mathcal{O} is a completely regular line oval.

Proof. Let $\Sigma=\left\{S_{0}, S_{1}, \ldots, S_{q}\right\}$ be a spread of a $2 d$-dimensional vector space V over $\operatorname{GF}(2)$ which defines \mathscr{A}_{q}. We can assume that the lines of \mathcal{O} are $\left\{S_{0}, S_{1}, S_{2}+v_{2}, \ldots, S_{q}+v_{q}\right\}$, where v_{2}, \ldots, v_{q} are, in some ordering, the non-zero vectors of S_{0}. As $\mathscr{D}(\mathcal{O}) \cong \mathscr{S}^{1}(2 d)$, so, because of Proposition 2, there is a quadratic form on V with group $O^{+}(2 d, 2)$ such that $B(\mathcal{O})$ is the set of singular vectors of Q. Let f be the non-degenerate alternating bilinear on V form polarised by Q, that is

$$
f(v, w)=Q(v+w)+Q(v)+Q(w) \quad \text { for } v, w \in V .
$$

Let $S(Q)=B(\mathcal{O})$ be the set of singular vectors of Q. Then for every $v \in S(Q)$ the quadratic form Q_{v} defined by $Q_{v}(w)=Q(v+w), w \in V$, also polarises to f and its set of singular vectors is $S(Q)+v$. As $S(Q)=B(\mathcal{O})$, so $S\left(Q_{v}\right)=S(Q)+v=B\left(\mathcal{O}^{\tau_{v}}\right)$,
where τ_{v} is the translation $w \mapsto w+v$. Therefore the subspaces $S_{i}, i=0,1, \ldots, q$, are totally isotropic with respect to f. For S_{0} and S_{1} are totally singular, since they are contained in $S(Q)$, and S_{i} is contained in $S\left(Q_{v_{i}}\right)=S(Q)+v_{i}, i=2, \ldots, q$. The spread Σ is then symplectic and \mathscr{A}_{q} is a symplectic translation plane. This proves item 1 of the theorem.

To prove that \mathcal{O} is completely regular we make use of coordinates to write explicitly its regular triples. Referring back to the construction at the beginning of the section, write $V=S_{0} \oplus S_{1}$ and choose dual bases $\left\{v_{1}, \ldots, v_{d}\right\}$ in S_{0} and $\left\{w_{1}, \ldots, w_{d}\right\}$ in S_{1} so that, in the basis $\mathscr{B}=\left\{v_{1}, \ldots, v_{d}, w_{1}, \ldots, w_{d}\right\}$,

$$
f\left((\boldsymbol{x}, \boldsymbol{y}),\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)\right)=\boldsymbol{x}^{\top} \boldsymbol{y}^{\prime}+\boldsymbol{y}^{\top} \boldsymbol{x}^{\prime}
$$

where $\boldsymbol{x}, \boldsymbol{x}^{\prime}, \boldsymbol{y}, \boldsymbol{y}^{\prime}$ are vectors of \mathbb{F}_{2}^{d}. Thus the quadratic form Q is

$$
Q((\boldsymbol{x}, \boldsymbol{y}))=\boldsymbol{x}^{\top} \boldsymbol{y}
$$

and the points which are on the lines of \mathcal{O} are the vectors $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{F}_{2}^{d} \times \mathbb{F}_{2}^{d}$ such that

$$
Q(\boldsymbol{x}, \boldsymbol{y})=\boldsymbol{x}^{\top} \boldsymbol{y}=0
$$

The above equation represents the set of points $B(\mathcal{O})$.
Let \mathscr{M} be the spread-set relative to Σ and \mathscr{B}. Then

$$
\Sigma=\{\boldsymbol{x}=\mathbf{0}\} \cup\{\boldsymbol{y}=M \boldsymbol{x} \mid M \in \mathscr{M}\} .
$$

Recall that \mathscr{M} is a set of 2^{d} symmetric matrices. The line oval \mathcal{O} is

$$
\mathcal{O}=\{\boldsymbol{x}=\mathbf{0}\} \cup\left\{\boldsymbol{y}=M \boldsymbol{x}+\boldsymbol{x}_{M} \mid M \in \mathscr{M}\right\}
$$

where the vector \boldsymbol{x}_{M} is determined by the condition

$$
Q\left(\boldsymbol{x}, M \boldsymbol{x}+\boldsymbol{x}_{M}\right)=\boldsymbol{x}^{\top} M \boldsymbol{x}+\boldsymbol{x}^{\top} \boldsymbol{x}_{M}=0 \quad \text { for all } \boldsymbol{x} \in \mathbb{F}_{2}^{d}
$$

If $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top}, \boldsymbol{x}_{M}=\left(\alpha_{1}, \ldots, \alpha_{d}\right)^{\top}$ and the symmetric matrix M has entries $a_{i j}$, $i, j=1, \ldots, d$, a calculation proves that

$$
\sum_{i=1}^{d}\left(a_{i i} x_{i}^{2}+\alpha_{i} x_{i}\right)=0, \quad \text { for all } x_{i} \in \mathbb{F}_{2}
$$

Hence $\alpha_{i}=a_{i i}, i=1, \ldots, d$. We reserve the symbol \boldsymbol{x}_{M} to denote the vector $\left(a_{11}, \ldots, a_{d d}\right)^{\top}$, where $\left(a_{11}, \ldots, a_{d d}\right)$ is the main diagonal of the matrix M.

Now we can write the regular triples of \mathcal{O}. Denote by (∞) and $(M), M \in \mathscr{M}$, the points on the line at infinity, corresponding to the subspaces $\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{y}=M \boldsymbol{x}$, respectively. We claim:
for every triple $\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}\right\}$ of distinct vectors of $\mathbb{F}_{2}^{d} \backslash\left\{\boldsymbol{x}_{M}\right\}$ such that $\boldsymbol{r}_{1}+\boldsymbol{r}_{2}+\boldsymbol{r}_{3}=\boldsymbol{x}_{M}$, the triple of lines of \mathscr{A}_{q}

$$
\left\{\boldsymbol{y}=M \boldsymbol{x}+\boldsymbol{r}_{1}, \boldsymbol{y}=M \boldsymbol{x}+\boldsymbol{r}_{2}, \boldsymbol{y}=M \boldsymbol{x}+\boldsymbol{r}_{3}\right\}
$$

is (M)-regular.
Also, for every triple $\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}\right\}$ of distinct vectors of $\mathbb{F}_{2}^{d} \backslash\{\mathbf{0}\}$ such that $\boldsymbol{r}_{1}+\boldsymbol{r}_{2}+$ $\boldsymbol{r}_{3}=\mathbf{0}$, the triple

$$
x=r_{1}, x=r_{2}, x=r_{3}
$$

is (∞)-regular .
To prove the claim, consider the intersection between the line $\boldsymbol{y}=N \boldsymbol{x}+\boldsymbol{h}$ and the lines of the first triple, where $N \neq M$. We find the vectors

$$
\boldsymbol{v}_{k}=\left((N+M)^{-1}\left(\boldsymbol{r}_{k}+\boldsymbol{h}\right), M(N+M)^{-1}\left(\boldsymbol{r}_{k}+\boldsymbol{h}\right)+\boldsymbol{r}_{k}\right), \quad k=1,2,3 .
$$

Since M and N are symmetric matrices and $\boldsymbol{r}_{1}+\boldsymbol{r}_{2}+\boldsymbol{r}_{3}=\boldsymbol{x}_{M}$, we have

$$
\begin{aligned}
Q\left(\boldsymbol{v}_{1}\right)+ & Q\left(\boldsymbol{v}_{2}\right)+Q\left(\boldsymbol{v}_{3}\right) \\
= & \boldsymbol{h}^{\top}(N+M)^{-1} M(N+M)^{-1} \boldsymbol{h}+\boldsymbol{h}^{\top}(N+M)^{-1} \boldsymbol{x}_{M} \\
& +\boldsymbol{x}_{M}^{\top}(N+M)^{-1} M(N+M)^{-1} \boldsymbol{x}_{M}+\boldsymbol{x}_{M}^{\top}(N+M)^{-1} \boldsymbol{x}_{M}
\end{aligned}
$$

As $\boldsymbol{x}^{\top} M \boldsymbol{x}+\boldsymbol{x}^{\top} \boldsymbol{x}_{M}=0$ for all $\boldsymbol{x} \in \mathbb{F}_{2}^{d}$, putting in the above equation $(N+M)^{-1} \boldsymbol{h}=\boldsymbol{x}$ and $(N+M)^{-1} \boldsymbol{x}_{M}=\boldsymbol{y}$, we get

$$
Q\left(\boldsymbol{v}_{1}\right)+Q\left(\boldsymbol{v}_{2}\right)+Q\left(\boldsymbol{v}_{3}\right)=\left(\boldsymbol{x}^{\top} M \boldsymbol{x}+\boldsymbol{x}^{\top} \boldsymbol{x}_{M}\right)+\left(\boldsymbol{y}^{\top} M \boldsymbol{y}+\boldsymbol{y}^{\top} \boldsymbol{x}_{M}\right)=0
$$

Consequently, if two of the vectors $\boldsymbol{v}_{k}, k=1,2,3$, are not in $B(\mathcal{O})=S(Q)$ then the third is in $B(\mathcal{O})$.

The other case is similar.
Now we will prove that any symplectic translation plane admits a completely regular line oval.

Let \mathscr{A}_{q} be a symplectic translation plane of even order $q=2^{d}$, defined by the symplectic spread $\Sigma=\left\{S_{0}, S_{1}, \ldots, S_{q}\right\}$ of a $2 d$-dimensional vector space V over $\mathrm{GF}(2)$, equipped with a non-degenerate alternating bilinear form f. Let Q be a quadratic form which polarises to f and whose group is $O^{+}(2 d, 2)$. Let $S(Q)=\{v \in V \mid Q(v)=0\}$ be the set of singular vectors of Q. Then

$$
|S(Q)|=2^{2 d-1}+2^{d-1}=\frac{q(q+1)}{2}
$$

Lemma 1. Any maximal totally isotropic subspace U not lying on $S(Q)$ meets $S(Q)$ in $a(d-1)$-dimensional subspace.

Proof. U has dimension d and the restriction of Q to U gives rise to a linear form on U which is not the zero form, since U is not contained in $S(Q)$. Therefore $S(Q) \cap U=$ $\{v \in U \mid Q(v)=0\}$ is a hyperplane of U and so its dimension is $d-1$.

Lemma 2. $S(Q)$ contains exactly two distinct components of Σ.
Proof. Let k be the number of components of Σ which are contained in $S(Q)$. Since Σ is a spread, then

$$
S(Q)=\left(S_{0} \cap S(Q)\right) \cup \cdots \cup\left(S_{q} \cap S(Q)\right)
$$

where $\left(S_{i} \cap S(Q)\right) \cap\left(S_{j} \cap S(Q)\right)=(0)$, for $i \neq j$. By the previous lemma

$$
|S(Q)|=1+k\left(2^{d}-1\right)+\left(2^{d}+1-k\right)\left(2^{d-1}-1\right)
$$

Since $|S(Q)|=2^{2 d-1}+2^{d-1}, k=2$ follows.
For any $v \in S(Q)$, the function $Q_{v}: V \rightarrow \mathbb{F}_{2}$, defined by $Q_{v}(w)=Q(v+w)$, is a quadratic form on V which polarises to f. Also, the set of singular vectors of Q_{v} is $S(Q)+v$. Therefore Lemma 2 applies to each $S(Q)+v$, with $v \in S(Q)$.

Lemma 3. Let S and T be two distinct components of Σ contained in $S(Q)$. Then for every $v \in S \backslash\{0\}$ there is exactly one component $S_{v} \in \Sigma$ such that $S_{v}+v \subset S(Q)$ and $S_{v} \neq S, S_{v} \neq T$. Moreover, if $v, w \in S \backslash\{0\}$ and $v \neq w$ then $S_{v} \neq S_{w}$.

Proof. Let $v \in S \backslash\{0\}$. Then $S(Q)+v$ contains two distinct components of Σ, one of which is S. Let S_{v} be the other. As $S_{v} \subset S(Q)+v$, so $S_{v}+v \subset S(Q)$. Clearly $S_{v} \neq S$. We claim that $S_{v} \neq T$. If $S_{v}=T$, then $T \subset S(Q) \cap(S(Q)+v)$). Therefore for all $z \in T$

$$
0=Q(z)=Q_{v}(z)=Q(v+z)=Q(v)+Q(z)+f(v, z)
$$

Since $Q(v)=Q(z)=0$, then $f(v, z)=0$ for all $z \in T$, which is absurd.
In a similar way we can prove the last assertion of the lemma. By way of contradiction, let $S_{v}=S_{w}$ for some $v \neq w$ in $S \backslash\{0\}$. Then $S_{v} \subset(S(Q)+v) \cap(S(Q)+w)$. Therefore for all $z \in S_{v}$

$$
0=Q_{v}(z)=Q_{w}(z)
$$

Then $Q(v+z)=Q(w+z)$ implies

$$
Q(v)+Q(z)+f(v, z)=Q(w)+Q(z)+f(w, z)
$$

As $Q(v)=Q(w)=0$, so $f(v+w, z)=0$ for all $z \in S_{v}$, which is absurd, as $v+w \in S \backslash\{0\}$.

Theorem 7. Let V be a $2 d$-dimensional vector space over $\mathrm{GF}(2), f$ a non-degenerate alternating bilinear form and $\Sigma=\left\{S_{0}, S_{1}, \ldots, S_{q}\right\}$ a symplectic spread of V, where $q=2^{d}$ and $d \geqslant 3$. Then the following statements hold.

1. The set $\mathcal{O}=\left\{S_{0}, S_{1}, S_{2}+v_{2}, \ldots, S_{q}+v_{q}\right\}$, where v_{2}, \ldots, v_{q} are, in a suitable ordering, the non-zero vectors of S_{0}, is a line oval in the translation plane $\mathscr{A}(\Sigma)$ of order $q=2^{d}$ defined by Σ.
2. The vector set $S_{0} \cup S_{1} \cup\left(S_{2}+v_{2}\right) \cup \cdots \cup\left(S_{q}+v_{q}\right)$ is the set of singular vectors of a quadratic form Q which polarises to f.
3. \mathcal{O} is completely regular.

Proof. Let Q be a quadratic form which polarises to f and whose group is $O^{+}(2 d, 2)$. Further, let $S(Q)$ be the set of singular vectors of Q. By Lemma $2, S(Q)$ contains two components of Σ; let them be S_{0} and S_{1}. So $S_{0} \cup S_{1} \subseteq S(Q)$. By Lemma 3, $S(Q)$ contains the subset

$$
S_{0} \cup S_{1} \cup\left(S_{2}+v_{2}\right) \cup \cdots \cup\left(S_{q}+v_{q}\right)
$$

where v_{2}, \ldots, v_{q} are, in a suitable ordering, the non-zero vectors of S_{0} and the sets $S_{k}+v_{k}, k=2, \ldots, q$, are pairwise distinct. Then in the translation plane $\mathscr{A}(\Sigma)$ the vector set $S(Q)$ contains $q+1$ distinct lines. Denote by \mathcal{O} this set of lines. Since $|S(Q)|=q(q+1) / 2$, then the number of points which are not on the lines of \mathcal{O} is $t_{0} \geqslant q(q-1) / 2$, since the vector space has q^{2} vectors. Because of Proposition $1, \mathcal{O}$ is a line oval whose nucleus is the line at infinity. Also, since the number of points which are on its lines is $q(q+1) / 2$, then

$$
S(Q)=S_{0} \cup S_{1} \cup\left(S_{2}+v_{2}\right) \cup \cdots \cup\left(S_{q}+v_{q}\right)
$$

This proves statements 1 and 2. Statement 3 follows from Proposition 2 and Theorem 6.

Theorems 7 and 6 prove Theorem 3 stated in the Introduction.
At this point we have a computational tool to describe line ovals when the translation plane is defined by a spread of a vector space over GF(2). However, a translation plane of order q^{n} is usually constructed from spreads of a $2 n$-dimensional vector space over $\mathbb{F}_{q}=\operatorname{GF}(q)$, with $q>2$. Therefore it is useful to illustrate how the methods developed during the proof of Theorem 6 can be applied to this more common situation. So let $V=V(2 n, q)$ be a $2 n$-dimensional vector space over $\mathbb{F}_{q}=\operatorname{GF}(q)$, where $q=2^{d}$, equipped with a non-degenerate alternating bilinear form f and $\Sigma=\left\{S_{0}, S_{1}, \ldots, S_{q^{n}}\right\}$ a symplectic spread of V. Denote by $\mathscr{A}(\Sigma)$ the corresponding translation plane of order q^{n}. Fix two components of Σ, say S_{0} and S_{1} and choose dual bases $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ in S_{0} and $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ in S_{1} so that

$$
f\left((\boldsymbol{x}, \boldsymbol{y}),\left(\boldsymbol{x}^{\prime}, \boldsymbol{y}^{\prime}\right)\right)=\boldsymbol{x}^{\top} \boldsymbol{y}^{\prime}+\boldsymbol{y}^{\top} \boldsymbol{x}^{\prime}
$$

where $\boldsymbol{x}, \boldsymbol{x}^{\prime}, \boldsymbol{y}, \boldsymbol{y}^{\prime}$ are vectors of \mathbb{F}_{q}^{n}. A quadratic form Q which polarises to f and whose group is $O^{+}(2 n, q)$ is

$$
Q((\boldsymbol{x}, \boldsymbol{y}))=\boldsymbol{x}^{\top} \boldsymbol{y}
$$

View the vector space $\mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$ as a $2 n d$-dimensional vector space over \mathbb{F}_{2}. Let $\mathrm{Tr}: \mathbb{F}_{q} \rightarrow \mathbb{F}_{2}$ be the trace map. As explained at the beginning of the section, using the bilinear map $f^{\prime}=\operatorname{Tr} \circ f$, the symplectic spread Σ gives rises to a symplectic spread Σ^{\prime} of $\mathbb{F}_{2}^{n d} \times \mathbb{F}_{2}^{n d}$, such that the plane $\mathscr{A}(\Sigma)$ is identical to the plane $\mathscr{A}\left(\Sigma^{\prime}\right)$. Because of Theorem 7, the plane $\mathscr{A}\left(\Sigma^{\prime}\right)$ admits a completely regular line oval \mathcal{O}^{\prime}, such that $B\left(\mathcal{O}^{\prime}\right)$ is the set of singular vectors of the quadratic form $Q^{\prime}=\operatorname{Tr} \circ Q$ which polarises to f^{\prime}. Regard the line oval \mathcal{O}^{\prime} as a line oval \mathcal{O} of $\mathscr{A}(\Sigma)$. Consequently, the points which are on the lines of \mathcal{O} are the vectors $(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{F}_{q}^{n} \times \mathbb{F}_{q}^{n}$ such that

$$
\operatorname{Tr}(Q(\boldsymbol{x}, \boldsymbol{y}))=\operatorname{Tr}\left(\boldsymbol{x}^{\top} \boldsymbol{y}\right)=0
$$

The above equation represents the set of points $B(\mathcal{O})$.
Let \mathscr{M} be the spread-set associated to Σ and \mathscr{B}. Then

$$
\Sigma=\{\boldsymbol{x}=\mathbf{0}\} \cup\{\boldsymbol{y}=M \boldsymbol{x} \mid M \in \mathscr{M}\}
$$

the matrices of \mathscr{M} are symmetric and the line oval \mathcal{O} is represented as

$$
\mathcal{O}=\{\boldsymbol{x}=\mathbf{0}\} \cup\left\{\boldsymbol{y}=M \boldsymbol{x}+\boldsymbol{x}_{M} \mid M \in \mathscr{M}\right\}
$$

where the vector \boldsymbol{x}_{M} is determined by the condition

$$
\operatorname{Tr}\left[Q\left(\boldsymbol{x}, M \boldsymbol{x}+\boldsymbol{x}_{M}\right)\right]=\operatorname{Tr}\left[\boldsymbol{x}^{\top} M \boldsymbol{x}+\boldsymbol{x}^{\top} \boldsymbol{x}_{M}\right]=0 \quad \text { for all } \boldsymbol{x} \in \mathbb{F}_{q}^{n}
$$

If $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)^{\top}, \boldsymbol{x}_{M}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\top}$ and the symmetric matrix M has entries $a_{i j}$, $i, j=1, \ldots, n$, a calculation proves that

$$
\operatorname{Tr}\left[\sum_{i=1}^{n}\left(a_{i i} x_{i}^{2}+\alpha_{i} x_{i}\right)\right]=0, \quad \text { for all } x_{i} \in \mathbb{F}_{q}
$$

Hence $\alpha_{i}=a_{i i}^{2^{d-1}}, i=1, \ldots, n$. We use the symbol \sqrt{a} to denote $a^{2^{d-1}}$ and reserve now the symbol \boldsymbol{x}_{M} to denote the vector $\left(\sqrt{a_{11}}, \ldots, \sqrt{a_{n n}}\right)^{\top}$, where $\left(a_{11}, \ldots, a_{n n}\right)$ is the main diagonal of the matrix M.

With a similar construction as that in the proof of Theorem 6, we can prove that the line oval \mathcal{O} is completely regular writing explicitly its regular triples.

Denote by (∞) and $(M), M \in \mathscr{M}$, the points on the line at infinity of $\mathscr{A}(\Sigma)$, which correspond to the subspaces $\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{y}=M \boldsymbol{x}$, respectively.

Theorem 8. The triple $\left\{\boldsymbol{y}=M \boldsymbol{x}+\boldsymbol{r}_{1}, \boldsymbol{y}=M \boldsymbol{x}+\boldsymbol{r}_{2}, \boldsymbol{y}=M \boldsymbol{x}+\boldsymbol{r}_{3}\right\}$ is (M)-regular if and only if $\boldsymbol{r}_{1}+\boldsymbol{r}_{2}+\boldsymbol{r}_{3}=\boldsymbol{x}_{M}$, where $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}$ are distinct vectors of $\mathbb{F}_{q}^{n} \backslash\left\{\boldsymbol{x}_{M}\right\}$. Also, the triple $\left\{\boldsymbol{x}=\boldsymbol{r}_{1}, \boldsymbol{x}=\boldsymbol{r}_{2}, \boldsymbol{x}=\boldsymbol{r}_{3}\right\}$ is (∞)-regular if and only if $\boldsymbol{r}_{1}+\boldsymbol{r}_{2}+\boldsymbol{r}_{3}=\mathbf{0}$, where $\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}$ are distinct vectors of $\mathbb{F}_{q}^{n} \backslash\{\mathbf{0}\}$.

Proof. The proof is essentially similar to that in the proof of Theorem 6. For the sake of completeness, we repeat it.

Consider the intersection between the line $\boldsymbol{y}=N \boldsymbol{x}+\boldsymbol{h}$ and the lines of the first triple, where $N \neq M$. We find the vectors

$$
\boldsymbol{v}_{k}=\left((N+M)^{-1}\left(\boldsymbol{r}_{k}+\boldsymbol{h}\right), M(N+M)^{-1}\left(\boldsymbol{r}_{k}+\boldsymbol{h}\right)+\boldsymbol{r}_{k}\right), \quad k=1,2,3
$$

Assume $\boldsymbol{r}_{1}+\boldsymbol{r}_{2}+\boldsymbol{r}_{3}=\boldsymbol{x}_{M}$. Then

$$
\begin{aligned}
& \operatorname{Tr}\left[Q\left(\boldsymbol{v}_{1}\right)+Q\left(\boldsymbol{v}_{2}\right)+Q\left(\boldsymbol{v}_{3}\right)\right] \\
& \quad=\operatorname{Tr}\left[\boldsymbol{h}^{\top}(N+M)^{-1} M(N+M)^{-1} \boldsymbol{h}+\boldsymbol{h}^{\top}(N+M)^{-1} \boldsymbol{x}_{M}\right. \\
& \left.\quad+\boldsymbol{x}_{M}^{\top}(N+M)^{-1} M(N+M)^{-1} \boldsymbol{x}_{M}+\boldsymbol{x}_{M}^{\top}(N+M)^{-1} \boldsymbol{x}_{M}\right]
\end{aligned}
$$

Since $\operatorname{Tr}\left[\boldsymbol{x}^{\top} M \boldsymbol{x}+\boldsymbol{x}^{\top} \boldsymbol{x}_{M}\right]=0$ for all $\boldsymbol{x} \in \mathbb{F}_{q}^{n}$, putting in the above equation $(N+M)^{-1} \boldsymbol{h}=\boldsymbol{x}$ and $(N+M)^{-1} \boldsymbol{x}_{M}=\boldsymbol{y}$, we get

$$
\begin{aligned}
& \operatorname{Tr}\left[Q\left(\boldsymbol{v}_{1}\right)+Q\left(\boldsymbol{v}_{2}\right)+Q\left(\boldsymbol{v}_{3}\right)\right] \\
& \quad=\operatorname{Tr}\left(\boldsymbol{x}^{\top} M \boldsymbol{x}+\boldsymbol{x}^{\top} \boldsymbol{x}_{M}\right)+\operatorname{Tr}\left(\boldsymbol{y}^{\top} \boldsymbol{M} \boldsymbol{y}+\boldsymbol{y}^{\top} \boldsymbol{x}_{M}\right)=0 .
\end{aligned}
$$

Consequently, as the trace map is additive, if two of the vectors $\boldsymbol{v}_{k}, k=1,2,3$, are not in $B(\mathcal{O})$ then the third is in $B(\mathcal{O})$.

To prove the only if part of the theorem it suffices to note that the number of (M) regular triples is $\left(q^{n}-1\right)\left(q^{n}-2\right) / 6$, which is also the number of triples $\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \boldsymbol{r}_{3}\right\}$, $\boldsymbol{r}_{i} \in \mathbb{F}_{q}^{n} \backslash\left\{\boldsymbol{x}_{M}\right\}$, whose sum is \boldsymbol{x}_{M}.

The other case is similar.
Examples. 1. The desarguesian plane $\operatorname{AG}(2, q)$. Let f be the non-degenerate alternating bilinear form

$$
f\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=x y^{\prime}+y x^{\prime}, \quad x, y, x^{\prime}, y^{\prime} \in \mathbb{F}_{q}
$$

with associated quadratic form $Q((x, y))=x y$. The symplectic spread is

$$
\Sigma=\{x=0\} \cup\left\{y=m x \mid x \in \mathbb{F}_{q}\right\}
$$

and a completely regular line oval is

$$
\mathcal{O}=\{x=0\} \cup\left\{y=m x+\sqrt{m} \mid m \in \mathbb{F}_{q}\right\} .
$$

Since $m \mapsto m^{2}$ is an automorphism of \mathbb{F}_{q}, letting $k^{2}=m$, we can write

$$
\mathcal{O}=\{x=0\} \cup\left\{y=k^{2} x+k \mid k \in \mathbb{F}_{q}\right\} .
$$

\mathcal{O} is a line conic.
2. The Lüneburg plane of order $q^{2}, q=2^{2 k+1}$, see [6] and [8]. Let σ be the automorphism of \mathbb{F}_{q} defined by $a \mapsto a^{2^{k+1}}$. Then $\sigma^{2}=2$ and $\sigma+1$ and $\sigma+2$ are automorphisms of the cyclic group \mathbb{F}_{q}^{*}. Using the standard alternating bilinear form, define the symplectic spread

$$
\Sigma=\{\boldsymbol{x}=\mathbf{0}\} \cup\left\{\boldsymbol{y}=M_{a, b} \boldsymbol{x} \mid a, b \in \mathbb{F}_{q}\right\}
$$

where $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{q}^{2}$ and

$$
M_{a, b}=\left(\begin{array}{cc}
a & a^{\sigma^{-1}}+b^{1+\sigma^{-1}} \\
a^{\sigma^{-1}}+b^{1+\sigma^{-1}} & b
\end{array}\right) .
$$

A completely regular line oval is

$$
\mathcal{O}=\{\boldsymbol{x}=\mathbf{0}\} \cup\left\{\boldsymbol{y}=M_{a, b} \boldsymbol{x}+(\sqrt{a}, \sqrt{b})^{\top} \mid a, b \in \mathbb{F}_{q}\right\} .
$$

4 Completely regular line ovals

This last section is devoted to the proof that if \mathcal{O} is a completely regular line oval in a translation plane of even order $q=2^{d}$, then $\mathscr{D}(\mathcal{O}) \cong \mathscr{S}^{1}(2 d)$. We will need some known results about P-regular line ovals (see Definition 2 in the Introduction). Notation is as in Section 2.

Let Π_{q} be a projective plane of even order $q, \mathscr{A}_{q}=\Pi_{q}^{n}$ the affine plane deduced from Π_{q} by deleting the line n and \mathscr{L} its set of affine lines. Let \mathcal{O} be a line oval with nucleus n. For every line $\ell \in \mathscr{L} \backslash \mathcal{O}$, let L be the point $\ell \cap n$ and define

$$
\mathscr{S}_{\ell}=\{m \in \mathscr{L} \backslash \mathcal{O} \mid m \neq \ell \text { and } \ell \cap m \in B(\mathcal{O})\} \cup\left(\mathscr{F}_{L} \backslash\left(\mathcal{O} \cap \mathscr{F}_{L}\right)\right) .
$$

Note that $\ell \in \mathscr{S}_{\ell}$.
Result 1. The incidence structure $\mathscr{H}(\mathcal{O})$ whose set of points is $\mathscr{L} \backslash \mathcal{O}$ and whose blocks are the subsets $\mathscr{S}_{\ell}, \ell \in \mathscr{L} \backslash \mathcal{O}$, is a Hadamard symmetric design with parameters

$$
v=q^{2}-1, \quad k=\frac{q^{2}}{2}-1, \quad \lambda=\frac{q^{2}}{4}-1
$$

admitting the null polarity $\ell \mapsto \mathscr{S}_{\ell}$.
The proof is straightforward.

Suppose now that the order of the plane is greater than or equal to 8 . Let P be any point on n and o the unique line of $\mathcal{O} \cap \mathscr{F}_{P}$. From now on we assume that \mathcal{O} is a P-regular line oval.

Result 2. $\mathscr{F}_{P}^{*}=\mathscr{F}_{P} \backslash\{n\}$ is a d-dimensional vector space over $\mathrm{GF}(2)$. Such a structure is determined as follows. Let $x, y \in \mathscr{F}_{P}^{*}$ with $x \neq y$. Then define:

$$
x+x=o, \quad x+o=o+x=x, \quad x+y=z
$$

where z is the third line of \mathscr{F}_{P}^{*} such that $\{x, y, z\}$ is P-regular.
The dual proof is in [9], Theorem 3, where associativity of addition is proved. Note that $\left|\mathscr{F}_{P}^{*}\right|=q$ and that the number of P-regular triples equals the number of 2-dimensional subspaces of \mathscr{F}_{P}^{*}. This number is $(q-1)(q-2) / 6$.

The hyperplanes of \mathscr{F}_{P}^{*}, which are its additive subgroups of order $q / 2$, can be recovered from the sets \mathscr{S}_{ℓ}.

Lemma 4. For every affine line $\ell \notin \mathcal{O} \cup \mathscr{F}_{P}, \mathscr{S}_{\ell} \cap \mathscr{F}_{P}$ is the set of points of a hyperplane of $\mathscr{\mathscr { Y }}_{P}^{*}$.

Proof. As $|\ell \cap B(\mathcal{O})|=q / 2$, so $\left|\mathscr{S}_{\ell} \cap \mathscr{F}_{P}\right|=q / 2$. Therefore it suffices to prove that $\mathscr{S}_{\ell} \cap \mathscr{F}_{P}$ is a subgroup of \mathscr{F}_{P}^{*}. Now if $x, y \in \mathscr{S}_{\ell} \cap \mathscr{F}_{P}$, then also $z=x+y$ is in $\mathscr{S}_{\ell} \cap \mathscr{F}_{P}$, since $\{x, y, z\}$ is a P-regular triple.

It follows that for every $\ell, m \in \mathscr{L} \backslash\left(\mathcal{O} \cup \mathscr{F}_{P}\right)$ with $\ell \neq m$,

$$
\left|\mathscr{S}_{\ell} \cap \mathscr{S}_{m} \cap \mathscr{F}_{P}\right|= \begin{cases}\frac{q}{2} & \text { if } \mathscr{S}_{\ell} \cap \mathscr{F}_{P}=\mathscr{S}_{m} \cap \mathscr{F}_{P} \\ \frac{q}{4} & \text { otherwise } .\end{cases}
$$

Lemma 5. Let $\ell \in \mathscr{L} \backslash\left(\mathcal{O} \cup \mathscr{F}_{P}\right)$. Then on each point R of ℓ with $R \neq \ell \cap o$ there is exactly one line $m \neq \ell$ such that $\mathscr{S}_{\ell} \cap \mathscr{F}_{P}=\mathscr{S}_{m} \cap \mathscr{F}_{P}$.

Proof. Let $\mathscr{F}_{R}^{0}=\mathscr{F}_{R} \backslash\left\{n, P R, \mathcal{O} \cap \mathscr{F}_{R}\right\}$. Note that $\left|\mathscr{F}_{R}^{0}\right|=q-1$ if $R \notin B(\mathcal{O})$, while $\left|\mathscr{F}_{R}^{0}\right|=q-3$ if $R \in B(\mathcal{O})$.

Let $H_{\ell, r}=\left|\mathscr{S}_{\ell} \cap \mathscr{S}_{r} \cap \mathscr{F}_{P}\right|, r \in \mathscr{F}_{R}^{0}$. Then

$$
\sum_{r \in \mathscr{F}_{R}^{0}} H_{\ell, r}= \begin{cases}\frac{q^{2}}{4} & \text { if } R \notin B(\mathcal{O}) \tag{*}\\ \frac{q^{2}}{4}+2 q-5 \frac{q}{2} & \text { if } R \in B(\mathcal{O}) .\end{cases}
$$

Relation $(*)$ is obtained counting in two different ways the pairs $(z, r) \in$ $\left(\mathscr{C}_{\ell} \cap \mathscr{F}_{P}\right) \times \mathscr{F}_{R}^{0}$ such that $z \cap r \in B(\mathcal{O})$.

Let k be the number of lines $r \in \mathscr{F}_{R}^{0}$ such that $\mathscr{S}_{\ell} \cap \mathscr{F}_{P}=\mathscr{S}_{r} \cap \mathscr{F}_{P}$. If $R \notin B(\mathcal{O})$, from (*)

$$
\sum_{r \in \mathscr{F}_{R}^{0}} H_{\ell, r}=k \frac{q}{2}+(q-1-k) \frac{q}{4}=\frac{q^{2}}{4}
$$

So $k=1$. If $R \in B(\mathcal{O})$, again from (*) we get

$$
\sum_{r \in \mathscr{F}_{R}^{0}} H_{\ell, r}=k \frac{q}{2}+(q-3-k) \frac{q}{4}=\frac{q^{2}}{4}+2 q-5 \frac{q}{2}
$$

Hence $k=1$.
Using Lemma 5 it is easy to prove that the equivalence relation on $\mathscr{L} \backslash\left(\mathscr{F}_{P} \cup \mathcal{O}\right)$

$$
\ell \sim m \quad \text { if } \mathscr{S}_{\ell} \cap \mathscr{F}_{P}=\mathscr{S}_{m} \cap \mathscr{F}_{P}
$$

has $q-1$ classes, each class has q elements and that the lines of a class plus the line o constitute a line oval. Therefore the P-regular line oval \mathcal{O} determines $q-1$ other line ovals $\mathcal{O}_{i}, i=1, \ldots, q-1$, all with nucleus n, such that

1. $\mathcal{O} \cap \mathcal{O}_{i}=\mathcal{O} \cap \mathscr{F}_{P}=\{o\}, i=1, \ldots, q-1$;
2. $\ell, m \in \mathcal{O}_{i} \backslash\{o\}$ if and only if $\mathscr{S}_{\ell} \cap \mathscr{F}_{P}=\mathscr{S}_{m} \cap \mathscr{F}_{P}$.

Definition 5. The set of line ovals $\left\{\mathcal{O}_{\mathcal{O}} \mathcal{O}_{i}\right\}_{i=1, \ldots, q-1}$, as above determined, is called the P-bundle of \mathscr{A}_{q}.

Note that the $q-1$ hyperplanes of \mathscr{F}_{P}^{*} are determined by the sets $\mathscr{S}_{\ell_{i}} \cap \mathscr{F}_{P}$, where $\ell_{i} \in \mathcal{O}_{i}, i=1, \ldots, q-1$.

A property which characterizes the line ovals $\mathcal{O}_{i}, i=1, \ldots, q-1$, is given by the following lemma.

Lemma 6. Let \mathcal{O}^{\prime} be a line oval such that $\mathcal{O}^{\prime} \cap \mathcal{O}=\mathcal{O} \cap \mathscr{F}_{P}=\{o\}$. Then \mathcal{O}^{\prime} is one of the line ovals \mathcal{O}_{i} if and only if $x \cap B(\mathcal{O})=x \cap B\left(\mathcal{O}^{\prime}\right)$ for every line $x \in \mathscr{F}_{P}^{*} \backslash\{o\}$ such that $x \cap B(\mathcal{O}) \cap B\left(\mathcal{O}^{\prime}\right) \neq \varnothing$.

Proof. Let $\mathcal{O}^{\prime}=\mathcal{O}_{i}$, some i. If $x \in \mathscr{F}_{P}^{*} \backslash\{o\}$ and $R \in x \cap B(\mathcal{O}) \cap B\left(\mathcal{O}_{i}\right)$, then there is a line ℓ of \mathcal{O}_{i} such that $\ell \cap x=R$. Therefore $x \in \mathscr{S}_{\ell} \cap \mathscr{F}_{P}$. Because of property 2 above, $x \in \mathscr{S}_{m} \cap \mathscr{F}_{P}$ for every $m \in \mathcal{O}_{i}$. Using the null polarity of the 2-design $\mathscr{H}(\mathcal{O}), m \in \mathscr{S}_{x}$ for every $m \in \mathcal{O}_{i}$. Therefore $x \cap B\left(\mathcal{O}_{i}\right) \subseteq x \cap B(\mathcal{O})$. As $\left|x \cap B\left(\mathcal{O}_{i}\right)\right|=|x \cap B(\mathcal{O})|$, so $x \cap B(\mathcal{O})=x \cap B\left(\mathcal{O}_{i}\right)$.

To prove the converse, it suffices to show that if ℓ and m are in \mathcal{O}^{\prime} then $\mathscr{S}_{\ell} \cap \mathscr{F}_{P}=\mathscr{S}_{m} \cap \mathscr{F}_{P}$. By way of contradiction, let $\ell \cap x \in B(\mathcal{O})$, but $m \cap x \notin B(\mathcal{O})$, some $x \in \mathscr{F}_{P}^{*} \backslash\{o\}$. Since $\ell \cap x \in B(\mathcal{O}) \cap B\left(\mathcal{O}^{\prime}\right)$, then $x \cap B(\mathcal{O})=x \cap B\left(\mathcal{O}^{\prime}\right)$. Therefore $m \cap x \notin B\left(\mathcal{O}^{\prime}\right)$, a contradiction.

From the above lemma we deduce that the line oval $\mathcal{O}_{i}, i=1, \ldots, q-1$, is P-regular and has the same P-regular triples as \mathcal{O}.

Proof. Let $\{x, y, z\}$ be a P-regular triple for \mathcal{O}. Let ℓ be a line such that $\ell \cap x \notin B\left(\mathcal{O}_{i}\right)$ and $\ell \cap y \notin B\left(\mathcal{O}_{i}\right)$. We claim that $\ell \cap z \in B\left(\mathcal{O}_{i}\right)$. We treat the cases $\ell \cap x \in B(\mathcal{O})$ and $\ell \cap y \in B(\mathcal{O})$, the others being similar.

Since $\{x, y, z\}$ is P-regular for \mathcal{O} and $\ell \cap x \in B(\mathcal{O}), \ell \cap y \in B(\mathcal{O})$, then $\ell \cap z \in B(\mathcal{O})$ and $\mathscr{C}\left(\mathscr{S}_{x}\right) \cap \mathscr{C}\left(\mathscr{S}_{y}\right) \subset \mathscr{S}_{z}$ Because of Lemma 6, from $\ell \cap x \notin B\left(\mathcal{O}_{i}\right)$ and $\ell \cap y \notin B\left(\mathcal{O}_{i}\right)$

$$
\mathcal{O}_{i} \subset \mathscr{C}\left(\mathscr{S}_{x}\right), \quad \mathcal{O}_{i} \subset \mathscr{C}\left(\mathscr{S}_{y}\right)
$$

follows. Therefore $\mathcal{O}_{i} \subset \mathscr{C}\left(\mathscr{S}_{x}\right) \cap \mathscr{C}\left(\mathscr{S}_{y}\right) \subset \mathscr{S}_{z}$. Thus $m \cap z \in B(\mathcal{O})$; whence $\ell \cap z \in$ $B\left(\mathcal{O}_{i}\right)$.

Let now $\overline{\mathcal{O}}$ be a line oval such that $\overline{\mathcal{O}} \cap \mathcal{O}=\mathcal{O} \cap \mathscr{F}_{P}=\{o\}$. If $\overline{\mathcal{O}}$ is P-regular and has the same P-regular triples as \mathcal{O}, then $\overline{\mathcal{O}}$ is one of the $\mathcal{O}_{i}, i=1, \ldots, q-1$. To prove the assertion, first note that \mathcal{O} and $\overline{\mathcal{O}}$ induce on \mathscr{F}_{P}^{*} the same additive structure. Let $x \in \mathscr{F}_{P}^{*}$. Denote by $I_{1}, \ldots, I_{q / 2}$ the $q / 2$ hyperplanes of \mathscr{F}_{P}^{*} which contain x. As each I_{j} can be realized as $\mathscr{C}_{\ell_{j}} \cap \mathscr{F}_{P}$, where ℓ_{j} is any affine line of \mathscr{F}_{Q} with $Q \neq P$, so $\ell_{j} \cap x \in B(\mathcal{O})$ if and only if $\ell_{j} \cap x \in B(\overline{\mathcal{O}})$. Therefore $x \cap B(\mathcal{O})=x \cap B(\overline{\mathcal{O}})$. Because of Lemma $6, \overline{\mathcal{O}}$ is one of the line ovals $\mathcal{O}_{i}, i=1, \ldots, q-1$.

We have proved
Result 3. (see also [10], Theorem 1 and Lemma 3) Let \mathcal{O} be a P-regular line oval. Then there exist $q-1$ other line ovals $\mathcal{O}_{i}, i=1, \ldots, q-1$, all with nucleus n, such that

1. $\mathcal{O} \cap \mathcal{O}_{i}=\mathcal{O} \cap \mathscr{F}_{P}=\{o\}, i=1, \ldots, q-1$;
2. $\ell, m \in \mathcal{O}_{i} \backslash\{o\}$ if and only if $\mathscr{S}_{\ell} \cap \mathscr{F}_{P}=\mathscr{S}_{m} \cap \mathscr{F}_{P}$.

Moreover, each line oval $\mathcal{O}_{i}, i=1, \ldots, q-1$, is P-regular, has the same P-regular triples as \mathcal{O} and any other P-regular line oval having the same P-regular triples as \mathcal{O} is one of the $\mathcal{O}_{i}, i=1, \ldots, q-1$.

We apply now Result 3 to the case where $\mathscr{A}_{q}=\Pi_{q}^{n}$ is a translation plane of even order $q=2^{d}$ with translation group T and \mathcal{O} is a completely regular line oval with respect to the line at infinity n. If P is a point on n, denote by T_{P} the group of all translations with centre P.

Lemma 7. Let $g \in T$. Then \mathcal{O}^{g} is a completely regular line oval and if $g \in T_{P}$ then \mathcal{O} and 0^{9} have the same P-regular triples.

Proof. First of all note that \mathcal{O}^{g} is a line oval with nucleus n. Also, $B(\mathcal{O})^{g}=B\left(\mathcal{O}^{g}\right)$. For, if $R \in B(\mathcal{O})$, then there is a line r of \mathcal{O} such that $R \in r$. Therefore $R^{g} \in B\left(\mathcal{O}^{g}\right)$, and so $B(\mathcal{O})^{g} \subseteq B\left(\mathcal{O}^{g}\right)$. Since $\left|B(\mathcal{O})^{g}\right|=\left|B\left(\mathcal{O}^{g}\right)\right|$, then $B(\mathcal{O})^{g}=B\left(\mathcal{O}^{g}\right)$ follows.

Let $\{x, y, z\}$ be any P-regular triple for \mathcal{O}, where P is any point on n. We prove that $\left\{x^{g}, y^{g}, z^{g}\right\}$ is a P-regular triple for \mathcal{O}^{g}. Let ℓ be any line not on P and assume that $\ell \cap x^{g}$ and $\ell \cap y^{g}$ are not in $B\left(\mathcal{O}^{g}\right)$. If $\ell \cap z^{g} \notin B\left(\mathcal{O}^{g}\right)$, then the points $\ell^{g} \cap x$, $\ell^{g} \cap y, \ell^{g} \cap z$ are not in $B(\mathcal{O})$, which is absurd, as $\{x, y, z\}$ is a P-regular triple for \mathcal{O}.

In particular, if $g \in T_{P}$, then $\left\{x^{g}, y^{g}, z^{g}\right\}=\{x, y, z\}$.

Because of this lemma and Result 3 above the P-bundle defined by \mathcal{O} is $\left\{\mathcal{O}^{g} \mid g \in T_{P}\right\}$. We fix the following notation:
$\left\{S_{0}, \ldots, S_{q}\right\}$ is the set of points of n;
T_{i} is the group of all translations with centre $S_{i}, i=0,1, \ldots, q$;
\mathscr{F}_{i} is the pencil of lines thought $S_{i}, i=0,1, \ldots, q ;$
o_{i} is the line $\mathcal{O} \cap \mathscr{F}_{i}, i=0,1, \ldots, q$;
$\mathscr{F}_{i}^{*}=\mathscr{F}_{i} \backslash\left\{o_{i}\right\}, i=0,1, \ldots, q$.
Recall that \mathscr{F}_{i}^{*} is a d-dimensional vector space over $\operatorname{GF}(2)$ and that the S_{i}-bundle is $\left\{\mathcal{O}^{g} \mid g \in T_{i}\right\}$.

Lemma 8. Let $I=\left\{o_{j}, m_{1}, \ldots, m_{q / 2-1}\right\}$ be any hyperplane of the vector space \mathscr{F}_{j}^{*}. Then there is a subgroup H of T_{i}, with $i \neq j$, of order $q / 2$ which stabilizes I. Moreover, also the group $H T_{j}$ of order $q^{2} / 2$ stabilizes I.

Proof. Let ℓ be a line of $\mathscr{F}_{i} \backslash\left\{o_{i}, n\right\}$, such that $\mathscr{S}_{\ell} \cap \mathscr{F}_{j}=I$. Then the points $\ell \cap m_{k}$, $k=1, \ldots, q / 2-1$, are in $B(\mathcal{O})$. Let $\left\{\mathcal{O}, \mathcal{O}^{h_{1}}, \ldots, \mathcal{O}^{h_{q-1}}\right\}$ be the S_{i}-bundle, where $\left\{1, h_{1}, \ldots, h_{q-1}\right\}=T_{i}$. Each of the lines $m_{k}, k=1, \ldots, q / 2-1$, is on one of the line ovals of the S_{i}-bundle. It is not restrictive to assume that $m_{k} \in \mathcal{O}^{h_{k}}, k=1, \ldots, q / 2-1$. So let $H=\left\{1, h_{1}, \ldots, h_{q / 2-1}\right\}$. From Lemma $6, \ell \cap m_{k} \in B(\mathcal{O}) \cap B\left(\mathcal{O}^{h_{k}}\right)$ implies $\ell \cap B(\mathcal{O})=\ell \cap B\left(\mathcal{O}^{h_{k}}\right)$ for every $h_{k} \in H$. Therefore for any h_{k} and h_{r} in H

$$
\left(\ell \cap B\left(\mathcal{O}^{h_{k}}\right)\right)^{h_{r}}=\ell \cap B\left(\mathcal{O}^{h_{k} h_{r}}\right)=\ell \cap B(\mathcal{O}) .
$$

Hence H is a subgroup of T_{i} which stabilizes I.
Clearly, also $H T_{j}$ stabilizes I and has order $q^{2} / 2$, as $H \cap T_{j}=\{1\}$.
The elementary abelian 2-group T is sharply transitive on the points of \mathscr{A}_{q}. Fix a point P_{0} of \mathscr{A}_{q}. Then for any point $P \neq S_{0}, \ldots, S_{q}$ there is exactly one $g \in T$ such that $P=P_{0}^{g}$. If $P=P_{0}^{g}$ and $Q=P_{0}^{h}$, then addition of points is meaningful: $P+Q:=P_{0}^{g h}$. In this way the set of points of \mathscr{A}_{q} becomes an elementary abelian 2-group G of order q^{2} isomorphic to T, whose identity element is the point P_{0}.

The design $\mathscr{D}(\mathcal{O})$ has been defined in Section 2.
Lemma 9. For any distinct blocks \boldsymbol{b} and \boldsymbol{c} of $\mathscr{D}(\mathcal{O}), \boldsymbol{b} \triangle \boldsymbol{c}$ is a left coset of a subgroup of G.

Proof. First we consider the case $\boldsymbol{b}=B(\mathcal{O})$ and $\boldsymbol{c}=B\left(\mathcal{O}^{g}\right), g \in T_{S}$, where S is one of the points $S_{0}, S_{1}, \ldots, S_{q}$ and T_{S} is the group of all translations with centre S. Let $\mathscr{F}_{S} \cap \mathcal{O}=\{o\}$. If $\ell \in \mathcal{O}^{g} \backslash\{o\}$, then $\mathscr{S}_{\ell} \cap \mathscr{F}_{S}$ is a hyperplane of \mathscr{F}_{S}^{*} and $\mathscr{S}_{\ell} \cap \mathscr{F}_{S}=$ $\mathscr{S}_{m} \cap \mathscr{F}_{S}$ for every $\ell, m \in \mathcal{O}^{g} \backslash\{o\}$. Let $I=\mathscr{S}_{\ell} \cap \mathscr{F}_{S}=\left\{o, z_{1}, \ldots, z_{q / 2-1}\right\}$. The remaining affine lines of \mathscr{F}_{S}, say $\bar{z}_{1}, \ldots, \bar{z}_{q / 2}$, share the following property:

$$
\text { any point on } \bar{z}_{i}, i=1, \ldots, q / 2 \text {, is either in } B(\mathcal{O}) \text { or in } B\left(\mathcal{O}^{g}\right) \text {. }
$$

Thus $B(\mathcal{O}) \triangle B\left(\mathcal{O}^{g}\right)$ is the set of points on the lines $\bar{z}_{1}, \ldots, \bar{z}_{q / 2}$. These points are $q^{2} / 2$ in number.

Let $P_{0} \in B(\mathcal{O}) \triangle B\left(\mathcal{O}^{g}\right) \quad\left(P_{0}\right.$ is the identity element of G). Then P_{0} is on one of the lines $\bar{z}_{1}, \ldots, \bar{z}_{q / 2}$, say \bar{z}_{1}. If $h \in T_{S}$, then P_{0}^{h} is a point on \bar{z}_{1}. Therefore $P_{0}^{h} \in B(\mathcal{O}) \triangle B\left(\mathcal{O}^{g}\right)$ for any $h \in T_{S}$. By Lemma 8 , let H be a subgroup of T_{i}, where $S_{i} \neq S$, of order $q / 2$ which stabilizes I and its complement $\left\{\bar{z}_{1}, \ldots, \bar{z}_{q / 2}\right\}$. Then $H T_{S}$ stabilizes I and its complement. So $B(\mathcal{O}) \triangle B\left(\mathcal{O}^{g}\right)$ consists of the points $\left\{P_{0}^{h_{i} g_{j}} \mid h_{i} \in H\right.$, $\left.g_{j} \in T_{S}\right\}$, which is a subgroup of G of order $q^{2} / 2$.

Next let us examine the case where $P_{0} \notin B(\mathcal{O}) \triangle B\left(\mathcal{O}^{g}\right)$. Then P_{0} is in $B(\mathcal{O}) \cap B\left(\mathcal{O}^{g}\right)$. So P_{0} is on one of the lines $\left\{o, z_{1}, \ldots, z_{q / 2-1}\right\}$. Using the subgroup H as determined above, we have that

$$
K=\left\{P_{0}^{h_{i} g_{j}} \mid h_{i} \in H, g_{j} \in T_{S}\right\}=\left(B(\mathcal{O}) \cap\left(B\left(\mathcal{O}^{g}\right)\right) \cup\left(\mathscr{C} B(\mathcal{O}) \cap \mathscr{C} B\left(\mathcal{O}^{g}\right)\right)\right.
$$

is a subgroup of G. Therefore if P is any point on one of the lines $\bar{z}_{1}, \ldots, \bar{z}_{q / 2}$, then $B(\mathcal{O}) \triangle B\left(\mathcal{O}^{g}\right)=P+K$ is a left coset of a subgroup of G.

The general case follows from the above ones. It suffices to note that if \boldsymbol{b} and $\boldsymbol{c}=B\left(\mathcal{O}^{h}\right)$ are two distinct blocks of $\mathscr{D}(\mathcal{O})$, then $\boldsymbol{b}=B\left(\mathcal{O}^{g}\right)$, where $g \in T$. Since $B(\mathcal{O}) \triangle B\left(\mathcal{O}^{h g}\right)$ is a left coset of a subgroup of G the same holds for $B\left(\mathcal{O}^{g}\right) \triangle B\left(\mathcal{O}^{h}\right)$.

Theorem 9. Let \mathscr{A}_{q} be a translation plane of even order $q=2^{d}$ with $d \geqslant 3$ and \mathcal{O} a completely regular line oval. Then $\mathscr{D}(\mathcal{O}) \cong \mathscr{S}^{1}(2 d)$.

Proof. The proof follows from the above lemma and Theorem 4.
Theorems 9 and 6 prove Theorem 2 stated in the Introduction.
Acknowledgments. I am indebted to W. M. Kantor who focused my attention on his paper [3]. Without his suggestion and a useful correspondence this paper would not have been written.

References

[1] J. W. P. Hirschfeld, Ovals in desarguesian planes of even order. Ann. Mat. Pura Appl. (4) 102 (1975), 79-89. MR 50 \#11013 Zbl 0293.50015
[2] J. W. P. Hirschfeld, Projective geometries over finite fields. Oxford Univ. Press 1979. MR 81h:51007 Zbl 0418.51002
[3] W. M. Kantor, Symplectic groups, symmetric designs, and line ovals. J. Algebra 33 (1975), 43-58. MR 51 \#189 Zbl 0298.05016
[4] W. M. Kantor, Spreads, translation planes and Kerdock sets. I. SIAM J. Algebraic Discrete Methods 3 (1982), 151-165. MR 83m:51013a Zbl 0493.51008
[5] W. M. Kantor, Spreads, translation planes and Kerdock sets. II. SIAM J. Algebraic Discrete Methods 3 (1982), 308-318. MR 83m:51013b Zbl 0535.51003
[6] G. Korchmáros, Le ovali di linea del piano di Lüneburg d'ordine $2^{2 r}$ che possono venir mutate in sé da un gruppo di collineazioni isomorfo al gruppo semplice $\mathrm{Sz}\left(2^{r}\right)$ di Suzuki. Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 15 (1979), 293-315. Zbl 0445.51003
[7] G. Korchmáros, Old and new results on ovals in finite projective planes. In: Surveys in combinatorics, 1991 (Guildford, 1991), 41-72, Cambridge Univ. Press 1991. MR 93b:51014 Zbl 0748.51012
[8] H. Lüneburg, Translation planes. Springer 1980. MR 83h:51008 Zbl 0446.51003
[9] A. Maschietti, Regular triples with respect to a hyperoval. Ars Combin. 39 (1995), 75-88. MR 96m:51008 Zbl 0828.51003
[10] A. Maschietti, A characterization of translation hyperovals. European J. Combin. 18 (1997), 893-899. MR 98j:51014 Zbl 0889.51011
[11] A. Maschietti, Difference sets and hyperovals. Des. Codes Cryptogr. 14 (1998), 89-98. MR 99j:05033 Zbl 0887.05010
[12] J. A. Thas, Construction of maximal arcs and dual ovals in translation planes. European J. Combin. 1 (1980), 189-192. MR 82a:05031 Zbl 0449.51011

Received 15 October, 2001; revised 4 February, 2002
A. Maschietti, Dipartimento di Matematica "G. Castelnuovo", Universitá "La Sapienza", P.le A. Moro, I-00182 Roma, Italy

Email: maschiet@mat.uniroma1.it

