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1 Introduction

A Desargues configuration is the configuration of 10 points and 10 lines of the clas-
sical theorem of Desargues in the complex projective plane. For a precise definition
see Section 2. The Greek mathematician C. Stephanos showed in 1883 (see [10]) that
one can associate to every Desargues configuration a curve of genus 2 in a canonical
way. Moreover he proved that the induced map from the moduli space of Desargues
configurations to the moduli space of curves of genus 2 is birational. Our main mo-
tivation for writing this paper was to understand the last result. Stephanos needed
about a hundred pages of classical invariant theory to prove it. We apply instead a
simple argument of Schubert calculus to prove a slightly more precise version of his
result.

Let Mp denote the (coarse) moduli space of Desargues configurations. It is a three-
dimensional quasiprojective variety. On the other hand, let ,ﬂé’ denote the moduli
space of stable binary sextics. There is a canonical isomorphism #;\A; =~ %61’ (see
[1]). Here #, denotes the moduli space of stable curves of genus 2 in the sense of
Deligne—Mumford and A; the boundary divisor parametrizing two curves of genus 1
intersecting transversely in one point. So instead of curves of genus 2, we may speak
of binary sextics. The main result of the paper consists of the following two state-
ments:

(1) There is a canonical injective birational morphism
D Mp — M.
(2) We determine a hypersurface H = ¢ such that
MP\H < im(®) < 4L,

where both the inclusions above are strict.

* Both authors would like to thank the GMD (Germany) and CNPq (Brasil) for support
during the preparation of this paper.



260 Dan Avritzer and Herbert Lange

A Desargues configuration is called special if one of its lines contains 4 configura-
tion points. We show:

(3) 4 Desargues configuration D is special if and only if the binary sextic ®(D) admits
a double point, i.e. the corresponding curve of genus 2 is not smooth.

The moduli space Mp admits a natural compactification Mp. We also study the
configurations corresponding to boundary points Mp\ Mp, which we call degenerate
Desargues configurations. In fact, there are degenerate Desargues configurations of
the first, second and third kind (see Section 2). As a rational map of normal projec-
tive varieties ® : Mp - -~ — .4 is defined in codimension 1. Hence it extends to a
morphism on an open set of the divisor Mp\ Mp. We show, however:

(4) The geometric interpretation of the morphism ® : Mp -+ — ,/%_6” does not extend to
an open set U: Mp = U = Mp, where the first inclusion is strict. In fact, the binary
sextic associated to a degenerate Desargues configuration of the first kind in an analo-
gous way is not semistable.

In Section 2, we construct the moduli space My and its compactification Mp. In
Section 3, we give the definition of the map ® : Mp — /%6” . Sections 4, 5, 6 and 7
contain the proofs of statements (1), (2), (3) and (4) respectively.

The second author would like to thank W. Barth with whom he discussed the
subject, already 15 years ago.

2 The moduli space of Desargues configurations

Let IP, denote the projective plane over the field of complex numbers. The classical
theorem of Desargues says: If the lines joining corresponding vertices of two triangles
A1, By, Cy and 4, By, C; in P, meet in a point 4 then the intersections of corre-
sponding sides liec on a line @ and conversely (see Figure 1).

The triangles are then said to be in perspective, A is called the center of perspective
and a the axis of perspective. The configuration consisting of the 10 points A4, 4;,
B;, C;, (i =1,2,3) and ten lines, namely the 6 sides of the triangles, the 3 lines joining
A to the vertices of the triangle and the axis of perspective, is called a Desargues con-
figuration. Tt is a 103-configuration meaning that each of the 10 lines contains 3 of the
10 points and through each of the 10 points there pass 3 of the 10 lines.

It may happen that one of the vertices of one triangle lies on the opposite side of
the other triangle, in which case Desargues’ theorem is still valid, but one line contains
now 4 of the 10 points. Contrary to some authors, we consider this configuration also
as a Desargues configuration and call it a special Desargues configuration.

As long ago as 1846, Cayley remarked (see [4], §1) that the 10 lines and 10 planes
determined by 5 points ey, e;, e3, e4, €5 in general position in IP; meet a plane 7 not
containing any of the points e; in a Desargues configuration. Conversely, it follows
from the standard proof of Desargues’ theorem via IP; (see [11]) that every Desargues
configuration is obtained in this way. In the sequel, we choose the coordinates of IP;
in such a way that

ep=(1:0:0:0),...,e4=(0:0:0:1), es=(1:1:1:1).
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Figure 1. Desargues’ theorem

If the plane = is given by the equation Z:Ll o;x; = 0, then the assumption that e; ¢ n
fori=1,...,5 amounts to

4
o 70 fori=1,...,4 and Zoci;éo.
i=1

We denote by D, the Desargues configuration determined by 7. It consists of the 10
points p;; := e;e; Nz and the 10 lines j == eejer Nmfor i < i, jk <S,i#j#k #i
(see Figure 2). Note that the notation is meant to be symmetric, i.e. p; = p; and
ik = i, etc. From the picture it is obvious that every point of a Desargues config-
uration is the center of perspective of two triangles: the point p;; is the centre of per-
spective of the triangles pj pi pim and pjpjipjm Where {i, j, k,I,m} = {1,2,3,4,5}. In
particular every point of the configuration admits an axis of perspective: for pj; it is
the line 4.

By definition two Desargues configurations Dy and D, are isomorphic if there is an
automorphism o € PGL,(C) such that D, = a(Dy).

Lemma 2.1. For planes n and ' € P53 not containing a point e; the following conditions
are equivalent:
1) D, is isomorphic to Dy.

2) There is an A € PGL3(C) such that
a) An =7,
b) A permutes the 5 points ey, . .. es.
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Figure 2. Desargues’ theorem in space

For the proof we need the following notion: a complete quadrangle of a Desargues
configuration D is a set of 4 points and six lines of D which form the points and lines
of a complete quadrangle. From Figure 2 it is obvious that D, (and thus any D) admits
exactly 5 complete quadrangles: any e; determines the complete quadrangle consisting
of the points pj;, pi, pit, Pim and the lines Zi, Ziji, Lijm, Lixts it Litm-

Proof of Lemma 1.1. We have to show that (1) implies (2), the converse implication
being obvious. So let o : 7 — 7’ be a linear isomorphism with a(D;) = D,/. We have
to show that « extends in a unique way to an 4 € PGL3(C) permuting the 5 points
e1,...,es. Certainly o maps the 5 complete quadrangles of D, onto the 5 complete
quadrangles of D,/. As outlined above a complete quadrangle of D, is uniquely de-
termined by a point e; and similarly for D,.. Hence « induces a permutation ¢ of the 5
points ey, ..., es. Itis easy to see that there is a one-dimensional family {4, e PGL;3(C) |
t e IPy} satisfying 4,(e;) = e,1) and 4,(n) = n’ (choose suitable coordinates for the
source-IP; and the image-IP; of 4 : IP; — IP3). For every ¢ € IP; the automorphism 4,
maps the line ey p1> onto the lin€ €5(1) Po(1)5(2)- SINCE €2 € €1 P12, €5(2) € 84(1)Pa(1)0(2), and
{Ai(e2) |t € P1} = &,1)Po(1)o(2)> there is a unique 7, € P such that

Ato = 6’6(2).
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We claim that 4 := A4,, satisfies apart from (a) also condition (b). But for 3 <k <5
we have e, = ey p1x N é;pax. Hence

Aler) = A(e1pix) N A(€2P2k) = €5(1) Pol)o(k) N Co(2) Pora(k) = €alk)
This concludes the proof of the lemma. ]

The 5 points ey, ..., es form a projective basis of IP3. Hence for every permutation
o of the points ey, ..., es there is a unique 4, € PGL3(C) inducing o. Let %5 denote
the group of these A,. The action of & on IP; induces an action on the dual projec-
tive space IP;. Define

5
U :=1P;\ U P,
i=1

where P,, denotes the plane in IP; parametrizing the planes = with e; € 7. The action
of % on IP; restricts to an action on U. Since the quotient of a quasi-projective
variety by a finite group is always an algebraic variety, we obtain as an immediate
consequence of Lemma 2.1

Theorem 2.2. The algebraic variety Mp := U/%s is a moduli space for Desargues
configurations.

It is clear how to define families of Desargues configurations. Doing this it is easy
to see that M is a coarse moduli space in the sense of geometric invariant theory. In
particular, M is uniquely determined as an algebraic variety. Since a Desargues con-
figuration may admit a nontrivial group of automorphisms, Mp is not a fine moduli
space.

Next we work out the subspace of Mp parametrizing special Desargues configura-
tions. By definition a Desargues configuration D is called special if and only if D con-
tains a point lying on its axis. The axis of a point pj; is the line /i, with {i, j, k,l,m} =
{1,2,3,4,5}. This implies that a configuration D, is special if and only if the plane
contains the point of intersection of a line &e; with the plane éxeje,,. Hence a De-
sargues configuration D, is special if and only if the plane 7 contains a point Q; =
ee;Negeey,, {i,j,k,l,m}={1,...,5}. Now let P c U = ]P;\UZ‘S:1 P,,, denote the
hyperplane parametrizing the planes =z in IP; not containing the points e;, but con-
taining the point Q. If ¢ : U — Mp denotes the natural projection map, then we
conclude, since the group .5 obviously acts transitively on the set of points {Q;;}:

Proposition 2.3. The special Desargues configurations are parametrized by the irre-
ducible divisor q(P13) in Mp.

In other words: if D is a special Desargues configuration then there is a plane
7 < IP3 containing the point Pj; = (1:1:0:0) and not containing any e¢; such that
D, = D.
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Figure 3. A degenerate Desargues configuration of the 1st kind

Finally we introduce degenerate Desargues configurations. Desargues’ theorem fails
if one of the two triangles is replaced by three lines passing through the center of per-
spective. However, the following classical theorem (see [9], p. 99, Exercise 14) may be
considered as a limiting case of Desargues’ theorem: If ABC is a proper triangle and
a,b,c are 3 lines passing through a point O (not lying on the sides of the triangle)
then the points a N BC,bN AC, cN AB are collinear if and only if there is a an involu-
tion 2 of the IP; of lines centered in O such that +(a) = OA,1(b) = OB,+(C) = OC.

It is now easy to see that for any configuration of 7 points and 10 lines in IP; sat-
isfying the conditions of the theorem there is a plane = = IP3 containing exactly 1 of
the 5 points e; such that the configuration is isomorphic to the configuration D cut out
on 7 by the lines €;¢; and the planes e;eje;. A picture of a degenerate Desargues con-
figuration D, is shown in Figure 3 where e5s € # and hence pis = pas = p3s = pas = es
with the notation above.

Note that of the 5 complete quadrangles of the Desargues configuration 4 still
survive in the degenerate case namely (in the case of Figure 3) {pi2, p13, P14, P15},
{P12, P23, P2, P25}, { P13-P23, P34, P3s}, { P14, P24, p3a, pas}. This implies that the proof
of Lemma 1.1 also works in this case. In other words: two degenerate Desargues
configurations D, and D, are isomorphic if and only if there is an automorphism
A € PGL;3(C) with Aw = n’ permuting the 5 points ey, ..., es in IP;. Similar remarks
can be made if the configuration is even more degenerate, that is if 2 triangles of a
Desargues configuration collapse (equivalently if the plane 7 passes through 2 of the
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Figure 4. A degenerate Desargues configuration of the 2nd kind

points ¢; (see Figure 4 where the triangle piaprap34 of Figure 3 collapsed) or if 2 tri-
angles collapse and the 2 points come together (equivalently if the plane = passes
through 3 of the points ¢;). In this case the configuration is a complete quadrangle.
We omit the details since they are easy to work out (see also Section 6).

These remarks induce the following definitions: as above fix 5 points ey, . .. ,es € IP3
in general position and consider any plane m < IP;. The 10 lines ;¢; and 10 planes
g;e;e; in IP3 cut out on 7 a configuration D, of points and lines. We call D, a gener-
alized Desargues configuration. If = contains a point e;, D is called a degenerate De-
sargues configuration. It is called of the i-th kind if = contains exactly i of the points e;
fori=1,2,3.

It is easy to see that Lemma 1.1 remains valid for generalized Desargues configura-
tions. In fact the same proof works also in the degenerate case. One has only to remark
that a degenerate Desargues configuration D, of the first kind (respectively 2™ kind,
respectively 3™ kind) admits 4 (respectively 3, respectively 1) complete quadrangles.
In the same way as we deduced Theorem 1.2 from Lemma 1.1 we obtain from this

Theorem 2.4. The variety Mp := P /%5 is a moduli space for generalized Desargues
configurations.

Remark 2.5. In [6] which is the standard reference for Desargues configurations, K.
Mayer constructs the moduli space Mp in a different way. He chooses the 4 points
of a complete quadrangle as a projective basis of IP,, say 4, Ay, By, C; in Figure 1.
Consider the points 4] := A4, N B, Cy, B := AB| N A4,C, and C| = AC; N A, B,. The
three cross-ratios (4, Ay, A{, A2), (A, By, B}, B>) and (4, C,C{,C,) determine the
Desargues configuration and an open set V of IPj represents Desargues configura-
tions. The choice of a complete quadrangle induces an action of % on V which
Mayer worked out explicitly. Moreover he showed that V' /% is the moduli space of
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Desargues configurations. For our purposes, the construction of Theorem 1.2 is more
appropriate.

3 The map ® : Mp — ,/%6”

Recall that a binary form f(x, y) of degree 6 is called stable if f admits no root of
multiplicity > 3 and that the moduli space .# of stable binary sextics exists (see [7]).
In this section, we present the construction of Stephanos (see [10]—in a slightly dif-
ferent set-up) associating to every Desargues configuration D, a binary sextic J, in a
canonical way. In Section 5 we will see that J, is stable so that we get a holomorphic
map @ : Mp — L.

As in the last section we fix the coordinate system of IP3 in such a way that e¢; =
(1:0:0:0),...,e4a=(0:0:0:1) and es=(1:1:1:1). Let = be a nondegener-
ate plane in P3, meaning that the configuration D, is nondegenerate, with equation
Z?:l o;z; = 0. For the coefficients o; of n this just means o; # 0 for i =1,...,4 and
SF o # 0. In 1847, von Staudt proved in his fundamental book [12] that there is
a unique (smooth) conic s, on 7 such that the polar line of every point of the con-
figuration Dy, is its axis. We call s, the von Staudt conic of D,.

Lemma 3.1. The von Staudt conic s, of D, is given by the equation Z?zl wz? =0 in
4
T Zi:l oizi = 0.

Proof. According to a remark of Reye, which is easy to check (see [8], p. 135), there is
a unique quadric S5 in IP; such that the tetrahedron ey, e;, e3,e4 is a polar tetrahe-
dron, i.e. the polar plane of ¢; with respect to Ss is the opposite plane of the tetrahe-
dron, and such that the polar plane of es is the plane z. If, as usual, we denote by S;s
also the matrix of the quadric, the conditions mean e;Sse; =0 for 1 <i,j <4, i #j
and esSs = (a1, 0,03, 04) . But this implies S5 = diag(o, o, %3, 04). Comparing the
definitions, the von Staudt conic s, is just the restriction of Ss to z, which gives the
assertion. ]

Note that the proof of Lemma 3.1 yields actually a proof of von Staudt’s theorem.
Obviously S5 depends on the choice of es as the cone vertex. One could in an analo-
gous way define S; (1 <7< 4) and use it to prove Lemma 3.1.

As remarked in the last section, each point ¢; corresponds to a complete quadrangle
of D,, namely pi;,. .., pi,- - -, psi. Since these 4 points are in general position, there is
a unique pencil of conics Aq; + ug> passing through the 4 points. The pencil 1q; + ug»
restricts to a pencil of effective divisors of degree 4 on the von Staudt conic s,. The
Jacobian of this pencil is an effective divisor j, of degree 6 on s,. It is defined as fol-
lows: choose an isomorphism ¢ : s, — IP; and coordinates (xi,x;) of IP;. There are
binary quartics fj(xy, x2) and f>(x1, x;) with zero divisor ¢(g; N s;) and ¢(¢2 Ns;). The
Jacobian of f; and f>

Jz(x1,x2) = det (%>

an
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is a binary sextic with zero divisor ¢(j,). Note the binary sextic is determined by the
pencil Aq1 + ug, up to a nonzero constant and an automorphism of IP;. We call J,
the Jacobian sextic of the pencil, for the Jacobian divisor j, on s,.

Theorem 3.2. The Jacobian divisor j, on the von Staudt conic s, is uniquely determined
by the Desargues configuration D,. It is cut out on s, by the cubic Z?:1 %z} = 0.

Proof. Choose first i = 5. The pencil of conics passing through the 4 points p;s, p2s,
P35, Pas 1s cut out on 7 by the pencil of cones in IP; passing through the 4 lines
eres, exes, e3es, eqe5. The conditions for a quadric Q < IP3 to be in this pencil are: Q is
singular in es, i.e. Qes =0 and ¢; € Q fori = 1,2,3,4, i.e. ¢;Qe; = 0. This yields

0 a b —(a+b)
B a 0 —(a+b) b
0= b —(a+b) 0 a
—(a+b) b a 0

Hence the pencil is generated by the cones

0 1 0 -1 0o 0 1 -1
1 0 -1 0 0 -1 1
Q=10 -1 o 1 and Q=11 | 4
1 0 1 0 1 1 0 0

It is easy to see that the Jacobi divisor of the pencil Aq; + 1g> on the curve s, =
{(z1:...:z4) e P3| Z?Zl oz = Z?Zl a;z? = 0} is the intersection of the curve s, with
the hypersurface of points in IP; where the vectors of partial derivatives d(>_ o;z;),
d(Y- wiz?), d(Q1), d(Q,) are linearly dependent. Here we consider Q; as the quadratic
form determined by the matrix Q;. This hypersurface is given by the equation

Oy 0121 Zp—Za Z3 — Z4

Oy 0OpZp Z1 —Z3 Z4 — Z3

J = det =0.

O3 03Z3 Z4 —Zp Z1 — I
04 04zZ4 Z3 — Z) Zy) — 1

We claim that J is congruent to 37| oz} modulo the ideal (3", oz, 3, 022). But

o o121 Zp) —Z4 Z3 — Z4

2] 0 5Y%) Z]1 —Z3 Z4 — I3
J =det

o3 03Z3 Z4 —Zp Z| —Ip

ZOC,‘ ZOC,‘Z,‘ 0 0
0121 Zp —Z4 Z3 — Z4

= - E ojdet| onzy z1—2z3 z4— 23 (mod E ac,-zl)
f 7

03Z3 Z4 —Zp Z1 — 22
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= fz oci[2(ocIZ? + ocgzg + agzg) - (oclzl2 + oczzg + 063232.)24 - 24(oc1212 + (ZgZ% + otng)
i

— 22 (onz1 + oza + 0323) + (21 4 22 4 23) (24 (0121 + 0222 + 4323)
— (o127 + %225 + 4323))]

4 4
-2 Z o Z ocjzj3 <m0d (Z oizZi, Z oc,zf) )

=1 j=1

It remains to show that if we start with another point ¢; we obtain the same Jacobi
divisor j, on s,. Without loss of generality we may start with e;, since choosing an-
other ¢; (2 < i < 4) amounts only to a permutation of the coordinates.

The pencil of conics in 7 passing through the points pi», p13, p14, p1s is cut out on 7
by the pencil of cones in IP; passing through the lines é1e3, e1e3, é1es, e1es. This pencil
is generated by the cones

0 0 0 00 0 0
00 1 0 00 0 1

I [

Q=1o 1 o 1| ™ 2=140 o _i
00 -1 0 01 -1 0

A very similar computation as the one above shows that modulo the ideal (3 o;z;,
> a;z?) the hypersurface of points in IP; where the vectors of partial derivatives
d(> 0iz;), d(3- 0uz?), d(Q)), d(Q5) are linearly dependent is given by Zle oz}, which
completes the proof of the theorem. O

If 7’ is another nondegenerate plane in IP; such that the Desargues configurations
D, and D, are isomorphic, it follows immediately from Lemma 2.1 and Theorem 3.2
that the isomorphism o : 7 — 7’ with a(D,) = D,» maps the Jacobi divisor j, on s,
onto the Jacobi divisor j, on s,:.

In the sequel we will always interpret j, as the binary sextic J, (see above and
recall that J;, is determined up to a nonzero constant and up to an automorphism of
Py). In Theorem 5.1, we will show that J, is always stable. Hence we obtain a ca-
nonical map

(D:MDH%GI’

of the moduli space of Desargues configurations into the moduli space of stable binary
sextics. It is clear that @ is holomorphic, since Theorem 3.2 implies that it is given by
polynomials.

Remark 3.3. The proof of Theorem 3.2 suggests another definition of the Jacobi di-
visor j,: the von Staudt conic s, is not contained in the pencil of conics Aq; + ugq>
passing through the points pis, pas, p3s, pas. Hence Ag; + ugz + vs,; is a net of conics
in the plane z. Its discriminant locus given by

det(q1,42,5:) =0
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is a cubic which intersects the conic s, in the Jacobian divisor j,. For the proof note
only that the net is general and thus its discriminant is equivalent to its Jacobian locus
given by det(dq;, dga, ds,) = 0.

Remark 3.4. Given a nondegenerate plane 7, we associated to every point e;,
(1 <i<5) a pencil of quartic divisors Af{' + uf; on the von Staudt conic s,. It is easy
to check that in general these 5 pencils are different from each other.

4 Injectivity of ® : Mp — /%61’

The main object of this section is to prove the following theorem.
Theorem 4.1. The map © : Mp — %6” is an injective birational morphism.

For the proof we need some preliminaries. Let 4 and B denote two quadrics in P,
(for us n =2 or 3) given by the equations x’4x = 0 and x'Bx = 0. Recall that A4 is
called apolar to B if

tr(A4 - Adj(B)) = 0.

Here Adj(B) denotes the adjoint matrix of B, i.e. the matrix of the dual quadric B of
B. Note that this definition is not symmetric (some authors say that A is apolar to B).
Geometrically this means the following (see [9]): a conic 4 is apolar to B in IP; if and
only if there is a triangle inscribed in 4 and self-polar with respect to B. A quadric 4
is apolar to B in IP5 if and only if there is a tetrahedron inscribed in 4 and self-polar
with respect to B.

Proposition 4.2. Let D, be a Desargues configuration. Every conic in  passing through
the 4 points of a complete quadrangle of D, is apolar to the von Staudt conic s;.

Proof. Since apolarity is a linear condition and by the special choice of the coordinates
it suffices to show that the quadric cones Q;, 0>, Q1 Q) (for the notation see the proof
of Theorem 3.2) are apolar to the the quadric diag(o, o2, a3, o4) in P3, whose restric-
tion to 7 is s,, which is an immediate computation. O

In order to show that a conic ¢ in the plane 7 passing through the points of a com-
plete quadrangle of D, is the unique conic apolar to s, and passing through ¢ N s, (with
multiplicities) we change the coordinates. We choose the coordinates (xo : x; : x2) of
7 = IP, in such a way that the von Staudt conic s, is given by the equation

x12—4x0xz =0 (1)

So the matrix of the dual conic is:
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Let (¢ : t;) denote homogeneous coordinates of IP;. Then
(l() : ll) — (X() A Xz) = (lé : 2001 112)

is a parametrization IP; = s, of s,. Using this, any effective divisor of degree 4 on s,
can be interpreted as a binary quartic f(¢,#). Hence

f(to, t1) = aoty + da1t3t; + 6ar 2t} + dastot; + ayt} (2)

with (ag : a1 : a» : a3 : as) € Ps representing an arbitrary divisor of degree 4 on s;.
Given an effective divisor J, of degree 4 on s,, i.e. a binary quartic f, consider the
conic

q= aoxg + azxf + a4x§ + 2a1x0x1 + 2arx0x2 + 2a3x1x;3.

Lemma 4.3. The conic q is the unique conic passing through the divisor 6 and apolar to
the von Staudt conic sy.

Proof. Note first that ¢ passes through ¢ by the choice of the parametrization. It is
apolar to s,, since

ayp dady dr 0 0 2
trl a1 a as 0 —4 0| =2a, —4ay +2a, =0.
dy d3 dy 2 0 0

On the other hand, apolarity is one linear condition. Hence the space of conics apolar
to s, is isomorphic to IP4. Now it is easy to see ([3], p. 17) that any divisor of degree 4
on s, imposes independent conditions on conics. In other words, the space of conics
passing through J is isomorphic to IP;. Hence there is exactly one conic passing
through ¢ and apolar to s, if we only show that not every conic passing through J is
apolar to s.

For this we assume 0 = p1 + p> + p3 + ps with p; # p;, for i #j, the degenerate
cases being even easier to check. We may choose the coordinates in such a way that
inP; we have py =(0:1), po=(1:0), p3=(1:1), pa=(1:¢) witht+#0,1. So in
Py pr=00:0:1),p2=(1:0:0),p3=(1:2:1),ps=(1:2¢:¢%) and 2t(t — 1)xy +
(1 —1¢%)y?+ (2t —2)yz =0 is a conic passing through p,, for i = 1,...,4 and not
apolar to s,, if ¢ # —1. If t = —1 then 2xy + 4xz — y*> — 2yz satisfies these conditions.

[

We call ¢ the conic associated to the binary quartic (2). If we associate to every
divisor of a pencil A6, + pd, of quartic divisors the unique conic of Lemma 4.3, we
obtain a pencil of conics. Hence we obtain as an immediate consequence of Propo-
sition 4.2 and Lemma 4.3:

Corollary 4.4. Let D, be a Desargues configuration. The pencil of conics Aq1 + uqs
passing through the 4 points of a complete quadrangle of D, is the unique pencil of
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conics cutting out the pencil of quartic divisors (Aq\ + uqa) N s, which is apolar to the
von Staudt conic sy.

Given a smooth conic ¢y, we choose the coordinates in such a way that ¢ is given
by Equation (1). As outlined above, any pencil of binary quartics can be interpreted
(up to isomorphism) as a pencil of quartic divisors on ¢gy. There is a unique pencil of
conics associated to it according to Lemma 4.3. We call a pencil of binary quartics
(respectively the corresponding pencil of quartic divisors) admissible if its associated
pencil of conics is general, i.e. its base locus consists of 4 different points. The fol-
lowing proposition is the first step in the proof of Theorem 4.1.

Proposition 4.5. Consider an admissible pencil of quartic divisors on a smooth conic
qo. There is a unique Desargues configuration D such that qq is the von Staudt conic of
D and the pencil of quartics is cut out on qo by the pencil of conics passing through the
points of a complete quadrangle of D.

Proof. Let p1, pa, p3, pa denote the 4 base points of the pencil of conics associated to
the given pencil of quartic divisors. Consider the complete quadrangle consisting of
the 4 points pi, p2, p3, p4 and the 6 lines £; = p;p; for 1 <i < j<4. Let p; be the
poles of the lines /; and /; the polars of the points p; with respect to the conic g.
Then the 10 points Py, p; and the 10 lines Zj, /; form a Desargues configuration ac-
cording to a theorem proved by von Staudt in 1831 (see [2], p. 62). Using Lemma 4.3
we have the assertion. O

Before we go on, let us note the following characterization of an admissible pencil
of binary quartics, which we need later.

Proposition 4.6. The pencil of binary quartics Afy + ufy with f; = Z]‘-‘:l (‘;)a;tg*j [1/ is
admissible if and only if the discriminant of the binary cubic det(tyq, + t1q2) is nonzero,

i i i
4 a4 a4
where q; = | a; ay aj | is the matrix of the conic associated to f; for i = 1,2.
i i
a; dy 4y

Proof. This is a consequence of the fact (see [11], Section 6.3) that the base locus of a
pencil of conics consists of 4 different points if and only if its discriminant does not
vanish together with Lemma 4.3. O

In order to complete the proof of Theorem 4.1, we need to compute the degree of
the Jacobian map. Note that the binary quartic (2) determines a point in IP4 namely
(ap : ...:aq). If we consider IP4 as the space of quartics, the space of pencils of binary
quartics is Gr(1,4), the Grassmannian of lines in P4. Considering in the same way
the space of binary sextics Zf’zo a;t§7'tl as P, the map associating to every pencil of
quartics its Jacobian defines a morphism

Jac: Gr(1,4) — IPs.

Note that Gr(1,4) is also of dimension 6. We need the following lemma:
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Lemma 4.7. The Jacobian map Jac : Gr(1,4) — Py is a ramified covering of degree 5.

Proof. Let Jfi + uf> be a pencil of quartics with f; = >0, (Yaitd el and fo =
Sty (9)bitg~'t]. Tts Jacobian is given by:

Jac(f1, f2) = det (5f)

]
= 16[po1 1§ + 3poatyts + 3(2p12 + pos)tats
+ (8p13 + poa) 365 + 3(2pa3 + pra) i3t} + 3patot] + paat?),

where p;; := a;b; — a;b; denotes the Pliicker coordinates of the pencil. In particular up
to a constant the Jacobian does not depend on the choice of f; and f; and defines a
point Jac(Af; + pf2) in IPg. The explicit form of Jac(fi, f>) implies that the map Jac
factorizes via the Pliicker embedding p

Py
p
q

ac

Gr(1,4) _ P IPg
with a linear projection map ¢. In fact Jac is given by
i+ wfa = (por : 3po2 : 3(2p12 + po3) < 8p13 + poa : 3(2p23 + p1a) : 3paa t paa) € P

It is the linear projection of the IPy with coordinates (po; : ... : p3a) with center the
plane P with equations po1 = pox = 2p12 + pos = 8p13 + pos = 2p2s + P14 = pu =
p3a = 0. On the other hand, the Pliicker variety p(Gr(1,4)) in Py is given by the
Pliicker relations among which there are

D12P34 — P13P24 + p1ap =0

DPo1 P34 — po3pia + poapiz =0
Po1 P23 — Poap13 +po3piz =0

Now if (po; : ... : psa) € PN p(Gr(1,4)), this implies p14p23 = poap13 = posp12 = 0,
so all p; = 0. Hence the center of projection P does not intersect the Pliicker variety.
This implies that the degree of Jac equals the degree of the Pliicker variety p(Gr(1,4))
in IPy. It is well known that this degree is 5 (see [5], p. 247). Since Jac cannot con-
tract a positive-dimensional subvariety of Gr(1,4) this completes the proof of the
lemma. [

Using this we can finally prove Theorem 4.1.

Proof of Theorem 4.1. Since admissibility of a pencil of quartics is an open condition
and the Jacobian map is finite, we conclude from Proposition 4.5 that ® is dominant
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and there is an open dense set U < <ﬂ6” such that for every sextic j € U the preimage
Jac™!() consists of exactly 5 pencils of quartics. Shrinking U if necessary we may as-
sume according to Remark 3.4 that every Desargues configuration D € ® ' (U) admits
5 different pencils of quartic divisors on the von Staudt conic. Hence for every j e U
the 5 pencils of quartics of any preimage D € ®~!(j) must coincide. Thus by Proposi-
tion 4.5 ®~!() consists only of one Desargues configuration, i.e. ® : ®1(U) — U is
bijective. This implies that @ is of degree 1. It remains to show the injectivity.

Since @ is a finite birational morphism of normal varieties, the injectivity can only
fail at points p of M for which ®(p) is a singular point of %61’. But %61’ admits only
3 singular points (see [1], Remark 5.4, p. 5551), namely a point of multiplicity 5 rep-
resented by the binary sextic js = t§ — fyf7, a point of multiplicity 2 represented by
Jo = 1§ — 121}, a point of multiplicity 3 represented by j3 = f3t; — £2¢}. The moduli
space Mp also admits a singular point of multiplicity 5: the Desargues configuration
D, with s given by z; — uzs + u?z3 — pi’z4 = 0, where u is a root of the equation
x* + x3 — x2 4+ x — 1 = 0, admits an automorphism of order 5 namely:

0 0 0 1
-1 0 0 1
0 -1 0 1
0 0 -1 1

It permutes the points ¢; as follows: e; — e, — e3 — e4 — e5 — e. It is easy to check
that D, is of multiplicity 5 in Mp and that ! (J5) = Dgi.

As in Example 5.3 below one checks that all pencils of quartics with Jacobian j,
are not admissible. Hence j is not in the image of ®. Finally as in Example 5.4 be-
low one checks that only one pencil of quartics with Jacobian j; is admissible namely
M3+ ngs with f3 = 263 + 613t} + 411} and g3 = L 1317. Hence @ is also injective at
the corresponding point at Mp. This completes the proof of the theorem. O

5 The image of the map @

Using the set-up of the last section we are now in a position to prove the following
theorem, which was announced (but not applied) already in Section 3.

Theorem 5.1. For any Desargues configuration D the associated binary sextic J = ®(D)
is stable.

Proof. Let J(1y, 1) be a nonstable binary sextic, i.e. admitting a root of multiplicity
>3. We choose coordinates in such a way that this rootis (0 : 1). Hence Jis of the form

J(to, 1) = Aotd + A1 13t + A3t} + A28

Suppose Af + ug with £ = S0 (Haitd~iti and g = 331, () bitd i1l is a pencil of bi-

1
nary quartics whose Jacobian is J (up to a nonzero constant). According to the results

of Section 4, it suffices to show that Af + ug is not admissible which according to
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Proposition 4.6 means that det(foq; + f1¢2) admits a double root where ¢; and ¢
denote the conics associated to f and g. By the equation for J given in the proof of
Lemma 4.7 the coefficients of f and ¢ satisfy the following system of equations
2(02[73 — a3b2) + arby —azb; =0
a2b4 - a4b2 =0 (3)
Cl3b4 — a4b3 =0
Assume first that a4 or by # 0. Without loss of generality we may assume that as = 1.

Replacing g by g — b4 f we may assume by = 0. But then the system (3) implies b3 =
b, = by = 0 and we obtain

toag + t1by  toar tyar
det(t0q1 + tﬂ]z) = tyay tvay ftoas
toar tyas In

which has a double root (0: 1). Hence as = b4 = 0. Then (3) just says

a2b3 — 613[72 =0 (4)
If asz = b3 = 0,
toap + t1iby  toay + by toar + t1b
det(toq1 + llqz) = | toar + by toar + t1b> 0

toay + t1by 0 0

which has a triple root. Finally, again without loss of generality, we may assume that
az = 1,b3 = 0. Then (4) implies b, = 0 and

toap + tiby  toa; + t1by  toan
det(toq1 + tiq2) = | toar + t1by toar to
toar to 0

which again has a double root (0 : 1). This completes the proof of the theorem. []

Theorems 4.1 and 5.1 lead to the question whether the map @ : My — %61’ is sur-
jective. In order to analyze this question, recall that we represented a quartic divisor
on the conic s : x} — 4xpx, by the binary quartic:

fto, t1) = aoty + 4a1t3t) + 6art2t? + dastoty + aqt}

dyp d4dy d

and the conic associated to it was given by the matrix [ @¢; @ a3 |. We are identi-
dy d3 dy

fying in this way the projective space Py = P4(ay : ... : as4) of binary quartics with the
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P4 of conics apolar to the conic s. Similarly we consider Gr(1,4) as a space of pencils
of conics. Hence we get a map

Jac: Gr(1,4) — P

associating to every pencil of conics apolar to s the Jacobian of its associated pencil
of binary quartics. According to the definition of the map ® a binary sextic j is in the
image of @ if and only if the preimage Jac™!() (which consists of 5 pencils counted
with multiplicities) consists not only of special pencils of conics, i.e. pencils of conics
Aq1 + 1gqy such that det(Aq; + ug>) admits a multiple root (4 : u). Let 2 < Gr(1,4)
denote the hypersurface of Gr(1,4) given by the equation

discr(det(Ag; + pgq2)) =0
Jac being a finite morphism, the image Jac(2) is a hypersurface in Pg. If U denotes
the open set of [P parametrizing stable sextics and p: U — gﬂé’ the natural projec-
tion, it is easy to see that also

H = p(Jac(2)NU)

is a hypersurface in ﬂé’ . We obtain
Proposition 5.2. The image im(®) of ® satisfies

MINAH < im(D) = 4.

The following two examples show that both inclusions are strict, i.e. im(®) # *ﬂsb
and M)\ A # im(D).

Example 5.3. Consider the binary sextic
Jo = —16t0 — 481317 + 1281317 — 48421} — 1649,

Jac™!(jy) contains the following 3 pencils of conics p; = qi + pgs, (i =1,2,3) with

-1.0 0 -8 1 0
gi=10 00 a=[1 01
0 0 1 0 10
11 1 010
g=(1 -1 0 q§:101>
-1 0 1 010
-1 10 01 0
g¢=1 00 q23:101)
0 0 1 010
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Since the Jacobian matrix of the map Jac : Gr(1,4) — IP¢ at the points pi, p2, p3 of
Gr(1,4) is of rank 5,6,5 the pencils p; and p; are in the ramification locus of Jac.
Hence Jac™' (o) = {p1, p2, p3}. Now it is easy to check that discr(det(Aq] + ugl)) =0
for i = 1,2, 3. Hence there is no Desargues configuration D, with ®(D;,) = jj.
Example 5.4. Consider the binary sextic

J1 = 4865ty + 48421}

Jac™!(jj1) contains the 2 pencils of conics p; = Aql + uql, (i = 1,2) with

=2 1 Llva 22 ~1 0
g=| 1 W& W2 a4=| -1 0 o0

T e S 0 0 0

101 00 1
=0 1 —3 gG=10 10

1 -1 0 100

One easily checks discr(det(Ag] + uq1)) =0 and discr(det(Ag? + uq3)) #0. So
2q} + ug? comes from a Desargues configuration, whereas Ag| + ug} does not. This
implies j; € im(®), but j; € .

6 Special Desargues configurations

Consider the 10 points in P3

Sp:=eezNezeges =(1:1:0:0) Sy :=ezesNejezes=(0:0:1:1)
Siz:=erezNezezes =(1:0:1:0) Sjs:=eesNezezes=(0:1:1:1)
Su:=ereaaNezezes =(1:0:0:1) Sys:=eesNejezea=(1:0:1:1)
Sy :=ee3Nejeges =(0:1:1:0) Sys:=ezesNejezegs=(1:1:0:1)
S :=eesNejezes=(0:1:0:1) Sy :=ezesNejezes=(1:1:1:0)

Recall that a Desargues configuration D;, is special if and only if the plane 7 contains
one of the points S;; (and no point ¢;). The following theorem gives a characterization
of special Desargues configurations in terms of their associated binary sextics.
Theorem 6.1. For a Desargues configuration D, the following statements are equivalent:
(1) D, is a special Desargues configuration.

(2) The binary sextic ®(Dy) admits a double point.
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Proof. Suppose 7 given by f(z) = Zle o;z; = 0 is a nondegenerate plane in IP3, such
that ®(D,) admits a double point. According to Theorem 3.2 ®(D,) is the sextic
divisor on the von Staudt conic defined by the complete intersection I(f, g, /) with
g(z) = 1, wz2 = 0and h(z) = .1 0z3 = 0. A point on this complete intersection
scheme is a double point if and only if the rank of the Jacobian matrix J(f,g,h) is
<2 at this point. But

df o1 0% o3 0lgq
J(f,g,h)= | dg | = | 2uz1 200z0 20323 2o4zy
dh 3oclzf 30(22% 30(32% 3oc4zf
1 1 1 1

Sork(J(f,g,h) =1k| z1 z2 z3 z4 | <2ifand only if

2 2 2 2
1z Iz zZj

1 1 1 1
det Z1 z» z3 z4 | with i-th column omitted » =0

2 2 2 2
21z Iz Zj

for i=1,...,4. But these are Vandermonde determinants. Hence (z;:...:z4) €
®(D,) is a double point if and only if it satisfies the following system of equations

(Zl —Zz)(Zl —Z3)(22—Z3) 0
(z1 —22)(z1 —z4)(z2 —2z4) =0
(Z] —23)(21 —Z4)(Z3 —Z4) 0
(Zz — 23)(22 — 24)(23 — Z4) 0

The solutions of the system above are exactly the points in IP; with 3 equal coordinates
or two pairs of equal coordinates. So after normalizing one type of such points is rep-
resented by (1:1:1:9) and the other by (1:1:y:y) with y e C. Such a point is
contained in the complete intersection I(f,g,h) ifand onlyif y=1ory=0.Ify =1

then s, contains the point es, so 7 is degenerate. If y = 0 then the (z; : ... : z4) is one
of the 10 points S;; as above. We conclude that ®(D,) admits a double point if and
only if D, is special. ]

Remark 6.2. In the same way one can show that a Desargues configuration D, admits
2 (respectively 3) lines containing 4 points if and only if ®(D,) admits 2 (respectively
3) double points.

7 Degenerate Desargues configuration

In this section we study an extension of the map @ : Mp — /%é’ to a holomorphic map
O:U— gﬂé’ where U is an open set with Mp = U = Mp, where the first inclusion is
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strict. First we have to define the von Staudt conic for degenerate Desargues config-
urations.

Recall that the von Staudt conic of a non-degenerate Desargues configuration D,
is defined by the fact that the map associating to every point p;; in D, the line /i, with
complementary indices is a polarity. This definition can be generalized verbatim to
the case of generalized Desargues configurations. One only has to add that if 2 points
pi; and py; coincide, no line is associated to them.

To be more precise, let D, be of the first kind, i.e. D, contains exactly one of the
points ¢;. For the sake of notational simplicity we assume that es € 7 (see Figure 3). In
this case the map associating to p; (i, j # 5) the line /s is just given by the involution
1 on the pencil of lines through es given by the fact that D, is a limit of Desargues
configurations (see Section 1). This involution has 2 fixed lines and their union is the
von Staudt conic sy.

Let now D, be of the second kind. Without loss of generality, we assume the case
of Figure 4, i.e. e4 and e5 € n. There are only 3 points apart from e4 and es namely p;»,
p13 and po3. To ppy the line /345 1s associated, to pi3 the line /245 and to py3 the line
/145. But these 3 lines coincide with ezes. Hence the von Staudt conic s, in this case is
the double line ézes.

Finally if D, is of the third kind, there are 3 points in the plane = to which no line is
associated. This implies that the von Staudt conic s, is the zero conic, i.e. the whole
plane 7. Note that if D, is of the i-th kind, the rank of the conic is 3 — i. Analogously
to Lemma 3.1 we have:

Lemma 7.1. Suppose D, is a degenerate Desargues configuration. The von Staudt conic
Sy of Dy is given by the equation Z;‘Zl ocizi2 =0 in the plane © = Z;‘Zl oizi = 0.

Proof. One can prove this either in the same way as Lemma 3.1 using an analogous
version of Reyes remark (see proof of Lemma 3.1) or just check it by computation: If
D, is degenerate of the first kind with say e4 € 7, i.e. 7 is given by o1z + 0z + 0323 =
0 with ay, 00, a3, Zf 1% # 0, the two fixed lines of the involution on the pencil of
lines with centre e4 are

A (70(10(20(3 — 062\/5)22 — (70(10(20(3 + 0!3\/5)23 =0 (5)
and
l{r: (70{10620(3 + O(z\/B)Zz — (70(10(20(3 — 063\/5)23 =0

with D = —ojopos(o + o2 + o3) # 0. One only has to check that the ideal (Zi}:l oz,
/1.4>) coincides with the ideal of s;.

If D, is degenerate of the second kind with say e3,e4 € © one easily checks that
(0121 + 0222, 0127 + 2223) is the ideal of the double line s, = 2e3es. Finally if D, is
degenerate of the third kind with say ey, e, e3 € @, then (o2, oclzlz) is the ideal of the
whole plane 7. O
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In order to investigate a possible extension of the map ® : Mp — .47, recall its
definition. Consider a Desargues configuration with von Staudt conic s,. The pencil
of conics passing through a complete quadrangle of D, restricts to a pencil of quartic
divisors in s, whose Jacobian is a stable sextic J independent of the choice of com-
plete quadrangle and we defined ®(D,) = J. Note that J was given by Zle oz =
S oz = ozl =0, if n: 31wz = 0. Now if D, is degenerate of the first
kind (respectively second) kind, D, admits still 4 (respectively 3) complete quadran-
gles. Restricting the pencil of conics passing through one of them to the von Staudt
conic sy, its Jacobian is still a sextic divisor on s,. The same proof as for Theorem 3.1
also gives in this situation that the sextic divisor on s, is independent of the choice of
the complete quadrangle and given by the equations

4

4 4
Z oizi = ZOC[Z,-Z = Z [Z? =0, (6)
i=1 i=1 i

i=1

ifn: Z?Zl o;z; = 0. (Notice that the difference to the above situation is that one (or
two) of the constants o, ..., o4, 0 + - - - + a4 vanishes.) Now if Dy is of the first kind,
the von Staudt conic is the union of two lines which intersect in a point, say py € @
and it is easy to check that the divisor j, on s, given by Equations (6) is 6p,. If D, is
of the second kind, the von Staudt conic is a double line s, = 2/, and it is easy to see
that the zero set of (6) is the whole line /. In the first case j, can be interpreted as
the sextic with a 6-fold point and in the second case not a sextic at all. In any case j,
cannot (at least not in an obvious way) be interpreted as a semistable binary sextic.
This means that the geometric definition of the map ® does not extend to degenerate
Desargues configurations.

Remark 7.2. At first sight this seems to contradict the fact that the rational map
O:Mp---— ,ﬂé’ is a morphism outside a subvariety of codimension > 2. The ex-
planation comes from the fact that the space of all binary sextics is not separated.
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