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1 Introduction

A Desargues configuration is the configuration of 10 points and 10 lines of the clas-
sical theorem of Desargues in the complex projective plane. For a precise definition
see Section 2. The Greek mathematician C. Stephanos showed in 1883 (see [10]) that
one can associate to every Desargues configuration a curve of genus 2 in a canonical
way. Moreover he proved that the induced map from the moduli space of Desargues
configurations to the moduli space of curves of genus 2 is birational. Our main mo-
tivation for writing this paper was to understand the last result. Stephanos needed
about a hundred pages of classical invariant theory to prove it. We apply instead a
simple argument of Schubert calculus to prove a slightly more precise version of his
result.
LetMD denote the (coarse) moduli space of Desargues configurations. It is a three-

dimensional quasiprojective variety. On the other hand, let Mb
6 denote the moduli

space of stable binary sextics. There is a canonical isomorphism H2nD1GMb
6 (see

[1]). Here H2 denotes the moduli space of stable curves of genus 2 in the sense of
Deligne–Mumford and D1 the boundary divisor parametrizing two curves of genus 1
intersecting transversely in one point. So instead of curves of genus 2, we may speak
of binary sextics. The main result of the paper consists of the following two state-
ments:

(1) There is a canonical injective birational morphism

F :MD ,! Mb
6 :

(2) We determine a hypersurface HHMb
6 such that

Mb
6 nHJ imðFÞJMb

6 ;

where both the inclusions above are strict.

* Both authors would like to thank the GMD (Germany) and CNPq (Brasil) for support
during the preparation of this paper.



A Desargues configuration is called special if one of its lines contains 4 configura-
tion points. We show:

(3) A Desargues configuration D is special if and only if the binary sextic FðDÞ admits
a double point, i.e. the corresponding curve of genus 2 is not smooth.

The moduli space MD admits a natural compactification MD. We also study the
configurations corresponding to boundary points MDnMD, which we call degenerate
Desargues configurations. In fact, there are degenerate Desargues configurations of
the first, second and third kind (see Section 2). As a rational map of normal projec-
tive varieties F :MD � � � ! Mb

6 is defined in codimension 1. Hence it extends to a
morphism on an open set of the divisor MDnMD. We show, however:

(4) The geometric interpretation of the morphism F :MD � � � ! Mb
6 does not extend to

an open set U: MDHUHMD, where the first inclusion is strict. In fact, the binary
sextic associated to a degenerate Desargues configuration of the first kind in an analo-

gous way is not semistable.

In Section 2, we construct the moduli space MD and its compactification MD. In
Section 3, we give the definition of the map F :MD ! Mb

6 . Sections 4, 5, 6 and 7
contain the proofs of statements (1), (2), (3) and (4) respectively.
The second author would like to thank W. Barth with whom he discussed the

subject, already 15 years ago.

2 The moduli space of Desargues configurations

Let P2 denote the projective plane over the field of complex numbers. The classical
theorem of Desargues says: If the lines joining corresponding vertices of two triangles
A1;B1;C1 and A2;B2;C2 in P2 meet in a point A then the intersections of corre-
sponding sides lie on a line a and conversely (see Figure 1).
The triangles are then said to be in perspective, A is called the center of perspective

and a the axis of perspective. The configuration consisting of the 10 points A;Ai;
Bi;Ci, ði ¼ 1; 2; 3Þ and ten lines, namely the 6 sides of the triangles, the 3 lines joining
A to the vertices of the triangle and the axis of perspective, is called a Desargues con-
figuration. It is a 103-configuration meaning that each of the 10 lines contains 3 of the
10 points and through each of the 10 points there pass 3 of the 10 lines.
It may happen that one of the vertices of one triangle lies on the opposite side of

the other triangle, in which case Desargues’ theorem is still valid, but one line contains
now 4 of the 10 points. Contrary to some authors, we consider this configuration also
as a Desargues configuration and call it a special Desargues configuration.
As long ago as 1846, Cayley remarked (see [4], §1) that the 10 lines and 10 planes

determined by 5 points e1; e2; e3; e4; e5 in general position in P3 meet a plane p not
containing any of the points ei in a Desargues configuration. Conversely, it follows
from the standard proof of Desargues’ theorem via P3 (see [11]) that every Desargues
configuration is obtained in this way. In the sequel, we choose the coordinates of P3

in such a way that

e1 ¼ ð1 : 0 : 0 : 0Þ; . . . ; e4 ¼ ð0 : 0 : 0 : 1Þ; e5 ¼ ð1 : 1 : 1 : 1Þ:
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If the plane p is given by the equation
P4

i¼1 aixi ¼ 0, then the assumption that ei B p

for i ¼ 1; . . . ; 5 amounts to

ai0 0 for i ¼ 1; . . . ; 4 and
X4
i¼1

ai0 0:

We denote by Dp the Desargues configuration determined by p. It consists of the 10
points pij :¼ eiej V p and the 10 lines lijk :¼ eiejek V p for ic i; j; kc 5; i0 j0 k0 i

(see Figure 2). Note that the notation is meant to be symmetric, i.e. pij ¼ pji and
lijk ¼ ljki, etc. From the picture it is obvious that every point of a Desargues config-
uration is the center of perspective of two triangles: the point pij is the centre of per-
spective of the triangles pik pil pim and pjk pjl pjm where fi; j; k; l;mg ¼ f1; 2; 3; 4; 5g. In
particular every point of the configuration admits an axis of perspective: for pij it is
the line lklm.
By definition two Desargues configurations D1 and D2 are isomorphic if there is an

automorphism a A PGL2ðCÞ such that D2 ¼ aðD1Þ.

Lemma 2.1. For planes p and p 0 A P3 not containing a point ei the following conditions

are equivalent:

1) Dp is isomorphic to Dp 0 .

2) There is an A A PGL3ðCÞ such that
a) Ap ¼ p 0,
b) A permutes the 5 points e1; . . . ; e5.

Figure 1. Desargues’ theorem
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For the proof we need the following notion: a complete quadrangle of a Desargues
configuration D is a set of 4 points and six lines of D which form the points and lines
of a complete quadrangle. From Figure 2 it is obvious thatDp (and thus anyD) admits
exactly 5 complete quadrangles: any ei determines the complete quadrangle consisting
of the points pij ; pik; pil ; pim and the lines lijk; lijl ; lijm; likl ; likm; lilm.

Proof of Lemma 1.1. We have to show that (1) implies (2), the converse implication
being obvious. So let a : p ! p 0 be a linear isomorphism with aðDpÞ ¼ Dp 0 . We have
to show that a extends in a unique way to an A A PGL3ðCÞ permuting the 5 points
e1; . . . ; e5. Certainly a maps the 5 complete quadrangles of Dp onto the 5 complete
quadrangles of Dp 0 . As outlined above a complete quadrangle of Dp is uniquely de-
termined by a point ei and similarly for Dp 0 . Hence a induces a permutation s of the 5
points e1; . . . ;e5. It is easy to see that there is a one-dimensional family fAt A PGL3ðCÞ j
t A P1g satisfying Atðe1Þ ¼ esð1Þ and AtðpÞ ¼ p 0 (choose suitable coordinates for the
source-P3 and the image-P3 of A : P3 ! P3Þ. For every t A P1 the automorphism At
maps the line e1 p12 onto the line esð1Þpsð1Þsð2Þ. Since e2 A e1 p12, esð2Þ A esð1Þ psð1Þsð2Þ, and
fAtðe2Þ j t A P1g ¼ esð1Þpsð1Þsð2Þ, there is a unique t0 A P1 such that

At0 ¼ esð2Þ:

Figure 2. Desargues’ theorem in space
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We claim that A :¼ At0 satisfies apart from ðaÞ also condition ðbÞ. But for 3c kc 5
we have ek ¼ e1 p1k V e2 p2k. Hence

AðekÞ ¼ Aðe1 p1kÞVAðe2 p2kÞ ¼ esð1Þ psð1ÞsðkÞ V esð2Þ ps2sðkÞ ¼ esðkÞ

This concludes the proof of the lemma. r

The 5 points e1; . . . ; e5 form a projective basis of P3. Hence for every permutation
s of the points e1; . . . ; e5 there is a unique As A PGL3ðCÞ inducing s. Let S5 denote
the group of these As. The action of S5 on P3 induces an action on the dual projec-
tive space P�

3 . Define

U :¼ P�
3n6

5

i¼1
Pei ;

where Pei denotes the plane in P�
3 parametrizing the planes p with ei A p. The action

of S5 on P�
3 restricts to an action on U. Since the quotient of a quasi-projective

variety by a finite group is always an algebraic variety, we obtain as an immediate
consequence of Lemma 2.1

Theorem 2.2. The algebraic variety MD :¼ U=S5 is a moduli space for Desargues
configurations.

It is clear how to define families of Desargues configurations. Doing this it is easy
to see thatMD is a coarse moduli space in the sense of geometric invariant theory. In
particular,MD is uniquely determined as an algebraic variety. Since a Desargues con-
figuration may admit a nontrivial group of automorphisms, MD is not a fine moduli
space.
Next we work out the subspace of MD parametrizing special Desargues configura-

tions. By definition a Desargues configuration D is called special if and only if D con-
tains a point lying on its axis. The axis of a point pij is the line lklm with fi; j; k; l;mg ¼
f1; 2; 3; 4; 5g. This implies that a configuration Dp is special if and only if the plane
contains the point of intersection of a line eiej with the plane ekelem. Hence a De-
sargues configuration Dp is special if and only if the plane p contains a point Qij ¼
eiej V ekelem, fi; j; k; l;mg ¼ f1; . . . ; 5g. Now let Pij HU ¼ P�

3n6
5

i¼1 Pei , denote the
hyperplane parametrizing the planes p in P3 not containing the points ei, but con-
taining the point Qij. If q : U !MD denotes the natural projection map, then we
conclude, since the group S5 obviously acts transitively on the set of points fQijg:

Proposition 2.3. The special Desargues configurations are parametrized by the irre-
ducible divisor qðP12Þ in MD.

In other words: if D is a special Desargues configuration then there is a plane
pHP3 containing the point P12 ¼ ð1 : 1 : 0 : 0Þ and not containing any ei such that
Dp GD.
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Finally we introduce degenerate Desargues configurations. Desargues’ theorem fails
if one of the two triangles is replaced by three lines passing through the center of per-
spective. However, the following classical theorem (see [9], p. 99, Exercise 14) may be
considered as a limiting case of Desargues’ theorem: If ABC is a proper triangle and
a; b; c are 3 lines passing through a point O (not lying on the sides of the triangle)
then the points aVBC; bVAC; cVAB are collinear if and only if there is a an involu-
tion { of the P1 of lines centered in O such that {ðaÞ ¼ OA; {ðbÞ ¼ OB; {ðCÞ ¼ OC.
It is now easy to see that for any configuration of 7 points and 10 lines in P2 sat-

isfying the conditions of the theorem there is a plane pHP3 containing exactly 1 of
the 5 points ei such that the configuration is isomorphic to the configuration D cut out
on p by the lines eiej and the planes eiejek. A picture of a degenerate Desargues con-
figuration Dp is shown in Figure 3 where e5 A p and hence p15 ¼ p25 ¼ p35 ¼ p45 ¼ e5
with the notation above.
Note that of the 5 complete quadrangles of the Desargues configuration 4 still

survive in the degenerate case namely (in the case of Figure 3) fp12; p13; p14; p15g,
fp12; p23; p24; p25g, fp13:p23; p34; p35g, fp14; p24; p34; p45g. This implies that the proof
of Lemma 1.1 also works in this case. In other words: two degenerate Desargues
configurations Dp and Dp 0 are isomorphic if and only if there is an automorphism
A A PGL3ðCÞ with Ap ¼ p 0 permuting the 5 points e1; . . . ; e5 in P3. Similar remarks
can be made if the configuration is even more degenerate, that is if 2 triangles of a
Desargues configuration collapse (equivalently if the plane p passes through 2 of the

Figure 3. A degenerate Desargues configuration of the 1st kind
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points ei (see Figure 4 where the triangle p14p24p34 of Figure 3 collapsed) or if 2 tri-
angles collapse and the 2 points come together (equivalently if the plane p passes
through 3 of the points ei). In this case the configuration is a complete quadrangle.
We omit the details since they are easy to work out (see also Section 6).
These remarks induce the following definitions: as above fix 5 points e1; . . . ; e5 A P3

in general position and consider any plane pHP3. The 10 lines eiej and 10 planes
eiejek in P3 cut out on p a configuration Dp of points and lines. We call Dp a gener-
alized Desargues configuration. If p contains a point ei, Dp is called a degenerate De-
sargues configuration. It is called of the i-th kind if p contains exactly i of the points ei
for i ¼ 1; 2; 3.
It is easy to see that Lemma 1.1 remains valid for generalized Desargues configura-

tions. In fact the same proof works also in the degenerate case. One has only to remark
that a degenerate Desargues configuration Dp of the first kind (respectively 2

nd kind,
respectively 3rd kind) admits 4 (respectively 3, respectively 1) complete quadrangles.
In the same way as we deduced Theorem 1.2 from Lemma 1.1 we obtain from this

Theorem 2.4. The variety MD :¼ P�
3=S5 is a moduli space for generalized Desargues

configurations.

Remark 2.5. In [6] which is the standard reference for Desargues configurations, K.
Mayer constructs the moduli space MD in a di¤erent way. He chooses the 4 points
of a complete quadrangle as a projective basis of P2, say A;A1;B1;C1 in Figure 1.
Consider the points A 0

1 :¼ AA1 VB1C1;B 0
1 :¼ AB1 VA1C1 and C 0

1 ¼ AC1 VA1B1. The
three cross-ratios ðA;A1;A 0

1;A2Þ; ðA;B1;B 0
1;B2Þ and ðA;C1;C 0

1;C2Þ determine the
Desargues configuration and an open set V of P3

1 represents Desargues configura-
tions. The choice of a complete quadrangle induces an action of S5 on V which
Mayer worked out explicitly. Moreover he showed that V=S5 is the moduli space of

Figure 4. A degenerate Desargues configuration of the 2nd kind
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Desargues configurations. For our purposes, the construction of Theorem 1.2 is more
appropriate.

3 The map F : MD ! M b
6

Recall that a binary form f ðx; yÞ of degree 6 is called stable if f admits no root of
multiplicityd 3 and that the moduli spaceMb

6 of stable binary sextics exists (see [7]).
In this section, we present the construction of Stephanos (see [10]—in a slightly dif-
ferent set-up) associating to every Desargues configuration Dp a binary sextic Jp in a
canonical way. In Section 5 we will see that Jp is stable so that we get a holomorphic
map F :MD ! Mb

6 .
As in the last section we fix the coordinate system of P3 in such a way that e1 ¼

ð1 : 0 : 0 : 0Þ; . . . ; e4 ¼ ð0 : 0 : 0 : 1Þ and e5 ¼ ð1 : 1 : 1 : 1Þ. Let p be a nondegener-
ate plane in P3, meaning that the configuration Dp is nondegenerate, with equationP4

i¼1 aizi ¼ 0. For the coe‰cients ai of p this just means ai0 0 for i ¼ 1; . . . ; 4 andP4
i¼1 ai0 0. In 1847, von Staudt proved in his fundamental book [12] that there is

a unique (smooth) conic sp on p such that the polar line of every point of the con-
figuration Dp is its axis. We call sp the von Staudt conic of Dp.

Lemma 3.1. The von Staudt conic sp of Dp is given by the equation
P4

i¼1 aiz
2
i ¼ 0 in

p :
P4

i¼1 aizi ¼ 0.

Proof. According to a remark of Reye, which is easy to check (see [8], p. 135), there is
a unique quadric S5 in P3 such that the tetrahedron e1; e2; e3; e4 is a polar tetrahe-
dron, i.e. the polar plane of ei with respect to S5 is the opposite plane of the tetrahe-
dron, and such that the polar plane of e5 is the plane p. If, as usual, we denote by S5
also the matrix of the quadric, the conditions mean eiS5ej ¼ 0 for 1c i; jc 4, i0 j

and e5S5 ¼ ða1; a2; a3; a4Þ t. But this implies S5 ¼ diagða1; a2; a3; a4Þ. Comparing the
definitions, the von Staudt conic sp is just the restriction of S5 to p, which gives the
assertion. r

Note that the proof of Lemma 3.1 yields actually a proof of von Staudt’s theorem.
Obviously S5 depends on the choice of e5 as the cone vertex. One could in an analo-
gous way define Si ð1c ic 4Þ and use it to prove Lemma 3.1.
As remarked in the last section, each point ei corresponds to a complete quadrangle

of Dp, namely p1i; . . . ; �piipii; . . . ; p5i. Since these 4 points are in general position, there is
a unique pencil of conics lq1 þ mq2 passing through the 4 points. The pencil lq1 þ mq2
restricts to a pencil of e¤ective divisors of degree 4 on the von Staudt conic sp. The
Jacobian of this pencil is an e¤ective divisor jp of degree 6 on sp. It is defined as fol-
lows: choose an isomorphism j : sp ! P1 and coordinates ðx1; x2Þ of P1. There are
binary quartics f1ðx1; x2Þ and f2ðx1; x2Þwith zero divisor jðq1 V spÞ and jðq2 V spÞ. The
Jacobian of f1 and f2

Jpðx1; x2Þ ¼ det
qfi

qxj

� �
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is a binary sextic with zero divisor jð jpÞ. Note the binary sextic is determined by the
pencil lq1 þ mq2 up to a nonzero constant and an automorphism of P1. We call Jp
the Jacobian sextic of the pencil, for the Jacobian divisor jp on sp.

Theorem 3.2. The Jacobian divisor jp on the von Staudt conic sp is uniquely determined

by the Desargues configuration Dp. It is cut out on sp by the cubic
P4

i¼1 aiz
3
i ¼ 0.

Proof. Choose first i ¼ 5. The pencil of conics passing through the 4 points p15; p25;
p35; p45 is cut out on p by the pencil of cones in P3 passing through the 4 lines
e1e5; e2e5; e3e5; e4e5. The conditions for a quadric QHP3 to be in this pencil are: Q is
singular in e5, i.e. Qe5 ¼ 0 and ei A Q for i ¼ 1; 2; 3; 4, i.e. eiQei ¼ 0. This yields

Q ¼

0 a b 
ðaþ bÞ
a 0 
ðaþ bÞ b

b 
ðaþ bÞ 0 a


ðaþ bÞ b a 0

0BBB@
1CCCA

Hence the pencil is generated by the cones

Q1 ¼

0 1 0 
1
1 0 
1 0

0 
1 0 1


1 0 1 0

0BBB@
1CCCA and Q2 ¼

0 0 1 
1
0 0 
1 1

1 
1 0 0


1 1 0 0

0BBB@
1CCCA:

It is easy to see that the Jacobi divisor of the pencil lq1 þ mq2 on the curve sp ¼
fðz1 : . . . : z4Þ A P3 j

P4
i¼1 aizi ¼

P4
i¼1 aiz

2
i ¼ 0g is the intersection of the curve sp with

the hypersurface of points in P3 where the vectors of partial derivatives dð
P

aiziÞ,
dð
P

aiz
2
i Þ, dðQ1Þ, dðQ2Þ are linearly dependent. Here we consider Qi as the quadratic

form determined by the matrix Qi. This hypersurface is given by the equation

J :¼ det

a1 a1z1 z2 
 z4 z3 
 z4

a2 a2z2 z1 
 z3 z4 
 z3

a3 a3z3 z4 
 z2 z1 
 z2

a4 a4z4 z3 
 z1 z2 
 z1

0BBB@
1CCCA ¼ 0:

We claim that J is congruent to
P4

i¼1 aiz
3
i modulo the ideal ð

P
i aizi;

P
i aiz

2
i Þ. But

J ¼ det

a1 a1z1 z2 
 z4 z3 
 z4

a2 a2z2 z1 
 z3 z4 
 z3

a3 a3z3 z4 
 z2 z1 
 z2P
ai

P
aizi 0 0

0BBB@
1CCCA

1

X
i

ai det

a1z1 z2 
 z4 z3 
 z4

a2z2 z1 
 z3 z4 
 z3

a3z3 z4 
 z2 z1 
 z2

0@ 1A mod
X
i

aizi

 !
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¼ 

X
i

ai½2ða1z31 þ a2z
3
2 þ a3z

3
3Þ 
 ða1z21 þ a2z

2
2 þ a3z

2
3Þz4 
 z4ða1z21 þ a2z

2
2 þ a3z

2
3Þ


 z24ða1z1 þ a2z2 þ a3z3Þ þ ðz1 þ z2 þ z3Þðz4ða1z1 þ a2z2 þ a3z3Þ


 ða1z21 þ a2z
2
2 þ a3z

2
3ÞÞ�

1
2
X4
i¼1

ai
X4
j¼1

ajz
3
j mod

X
i

aizi;
X
i

aiz
2
i

 ! !

It remains to show that if we start with another point ei we obtain the same Jacobi
divisor jp on sp. Without loss of generality we may start with e1, since choosing an-
other ei ð2c ic 4Þ amounts only to a permutation of the coordinates.
The pencil of conics in p passing through the points p12; p13; p14; p15 is cut out on p

by the pencil of cones in P3 passing through the lines e1e2; e1e3; e1e4; e1e5. This pencil
is generated by the cones

Q 0
1 ¼

0 0 0 0

0 0 1 0

0 1 0 
1
0 0 
1 0

0BBB@
1CCCA and Q 0

2 ¼

0 0 0 0

0 0 0 1

0 0 0 
1
0 1 
1 0

0BBB@
1CCCA:

A very similar computation as the one above shows that modulo the ideal ð
P

aizi;P
aiz

2
i Þ the hypersurface of points in P3 where the vectors of partial derivatives

dð
P

aiziÞ, dð
P

aiz
2
i Þ, dðQ 0

1Þ, dðQ 0
2Þ are linearly dependent is given by

P4
i¼1 aiz

3
i , which

completes the proof of the theorem. r

If p 0 is another nondegenerate plane in P3 such that the Desargues configurations
Dp and Dp 0 are isomorphic, it follows immediately from Lemma 2.1 and Theorem 3.2
that the isomorphism a : p ! p 0 with aðDpÞ ¼ Dp 0 maps the Jacobi divisor jp on sp
onto the Jacobi divisor jp 0 on sp 0 .
In the sequel we will always interpret jp as the binary sextic Jp (see above and

recall that Jp is determined up to a nonzero constant and up to an automorphism of
P1). In Theorem 5.1, we will show that Jp is always stable. Hence we obtain a ca-
nonical map

F :MD ! Mb
6

of the moduli space of Desargues configurations into the moduli space of stable binary
sextics. It is clear that F is holomorphic, since Theorem 3.2 implies that it is given by
polynomials.

Remark 3.3. The proof of Theorem 3.2 suggests another definition of the Jacobi di-
visor jp: the von Staudt conic sp is not contained in the pencil of conics lq1 þ mq2
passing through the points p15; p25; p35; p45. Hence lq1 þ mq2 þ nsp is a net of conics
in the plane p. Its discriminant locus given by

detðq1; q2; spÞ ¼ 0
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is a cubic which intersects the conic sp in the Jacobian divisor jp. For the proof note
only that the net is general and thus its discriminant is equivalent to its Jacobian locus
given by detðdq1; dq2; dspÞ ¼ 0.

Remark 3.4. Given a nondegenerate plane p, we associated to every point ei;
ð1c ic 5Þ a pencil of quartic divisors lf i1 þ mf i2 on the von Staudt conic sp. It is easy
to check that in general these 5 pencils are di¤erent from each other.

4 Injectivity of F : MD ! M b
6

The main object of this section is to prove the following theorem.

Theorem 4.1. The map F :MD ! Mb
6 is an injective birational morphism.

For the proof we need some preliminaries. Let A and B denote two quadrics in Pn

(for us n ¼ 2 or 3) given by the equations xtAx ¼ 0 and xtBx ¼ 0. Recall that A is
called apolar to B if

trðA �AdjðBÞÞ ¼ 0:

Here AdjðBÞ denotes the adjoint matrix of B, i.e. the matrix of the dual quadric B̂B of
B. Note that this definition is not symmetric (some authors say that A is apolar to B̂B).
Geometrically this means the following (see [9]): a conic A is apolar to B in P2 if and
only if there is a triangle inscribed in A and self-polar with respect to B. A quadric A
is apolar to B in P3 if and only if there is a tetrahedron inscribed in A and self-polar
with respect to B.

Proposition 4.2. Let Dp be a Desargues configuration. Every conic in p passing through
the 4 points of a complete quadrangle of Dp is apolar to the von Staudt conic sp.

Proof. Since apolarity is a linear condition and by the special choice of the coordinates
it su‰ces to show that the quadric cones Q1;Q2;Q

0
1Q

0
2 (for the notation see the proof

of Theorem 3.2) are apolar to the the quadric diagða1; a2; a3; a4Þ in P3, whose restric-
tion to p is sp, which is an immediate computation. r

In order to show that a conic q in the plane p passing through the points of a com-
plete quadrangle ofDp is the unique conic apolar to sp and passing through qV sp (with
multiplicities) we change the coordinates. We choose the coordinates ðx0 : x1 : x2Þ of
p ¼ P2 in such a way that the von Staudt conic sp is given by the equation

x21 
 4x0x2 ¼ 0 ð1Þ

So the matrix of the dual conic is:

bspsp ¼ 0 0 2

0 
4 0

2 0 0

0@ 1A
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Let ðt0 : t1Þ denote homogeneous coordinates of P1. Then

ðt0 : t1Þ ! ðx0 : x1 : x2Þ ¼ ðt20 : 2t0t1 : t21Þ

is a parametrization P1 !
@
sp of sp. Using this, any e¤ective divisor of degree 4 on sp

can be interpreted as a binary quartic f ðt0; t1Þ. Hence

f ðt0; t1Þ ¼ a0t
4
0 þ 4a1t30 t1 þ 6a2t20 t21 þ 4a3t0t31 þ a4t

4
1 ð2Þ

with ða0 : a1 : a2 : a3 : a4Þ A P5 representing an arbitrary divisor of degree 4 on sp.
Given an e¤ective divisor d, of degree 4 on sp, i.e. a binary quartic f , consider the
conic

q ¼ a0x
2
0 þ a2x

2
1 þ a4x

2
2 þ 2a1x0x1 þ 2a2x0x2 þ 2a3x1x2:

Lemma 4.3. The conic q is the unique conic passing through the divisor d and apolar to

the von Staudt conic sp.

Proof. Note first that q passes through d by the choice of the parametrization. It is
apolar to sp, since

tr

a0 a1 a2

a1 a2 a3

a2 a3 a4

0@ 1A 0 0 2

0 
4 0

2 0 0

0@ 1A ¼ 2a2 
 4a2 þ 2a2 ¼ 0:

On the other hand, apolarity is one linear condition. Hence the space of conics apolar
to sp is isomorphic to P4. Now it is easy to see ([3], p. 17) that any divisor of degree 4
on sp imposes independent conditions on conics. In other words, the space of conics
passing through d is isomorphic to P1. Hence there is exactly one conic passing
through d and apolar to sp if we only show that not every conic passing through d is
apolar to sp.
For this we assume d ¼ p1 þ p2 þ p3 þ p4 with pi0 pj , for i0 j, the degenerate

cases being even easier to check. We may choose the coordinates in such a way that
in P1 we have p1 ¼ ð0 : 1Þ, p2 ¼ ð1 : 0Þ, p3 ¼ ð1 : 1Þ, p4 ¼ ð1 : tÞ with t0 0; 1. So in
P2: p1 ¼ ð0 : 0 : 1Þ; p2 ¼ ð1 : 0 : 0Þ; p3 ¼ ð1 : 2 : 1Þ; p4 ¼ ð1 : 2t : t2Þ and 2tðt
1Þxyþ
ð1
 t2Þy2 þ ð2t
 2Þyz ¼ 0 is a conic passing through pi, for i ¼ 1; . . . ; 4 and not
apolar to sp, if t0
1. If t ¼ 
1 then 2xyþ 4xz
 y2 
 2yz satisfies these conditions.

r

We call q the conic associated to the binary quartic (2). If we associate to every
divisor of a pencil ld1 þ md2 of quartic divisors the unique conic of Lemma 4.3, we
obtain a pencil of conics. Hence we obtain as an immediate consequence of Propo-
sition 4.2 and Lemma 4.3:

Corollary 4.4. Let Dp be a Desargues configuration. The pencil of conics lq1 þ mq2
passing through the 4 points of a complete quadrangle of Dp is the unique pencil of
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conics cutting out the pencil of quartic divisors ðlq1 þ mq2ÞV sp which is apolar to the
von Staudt conic sp.

Given a smooth conic q0, we choose the coordinates in such a way that q0 is given
by Equation (1). As outlined above, any pencil of binary quartics can be interpreted
(up to isomorphism) as a pencil of quartic divisors on q0. There is a unique pencil of
conics associated to it according to Lemma 4.3. We call a pencil of binary quartics
(respectively the corresponding pencil of quartic divisors) admissible if its associated
pencil of conics is general, i.e. its base locus consists of 4 di¤erent points. The fol-
lowing proposition is the first step in the proof of Theorem 4.1.

Proposition 4.5. Consider an admissible pencil of quartic divisors on a smooth conic

q0. There is a unique Desargues configuration D such that q0 is the von Staudt conic of

D and the pencil of quartics is cut out on q0 by the pencil of conics passing through the

points of a complete quadrangle of D.

Proof. Let p1; p2; p3; p4 denote the 4 base points of the pencil of conics associated to
the given pencil of quartic divisors. Consider the complete quadrangle consisting of
the 4 points p1; p2; p3; p4 and the 6 lines lij ¼ pi pj for 1c i < jc 4. Let pij be the
poles of the lines lij and li the polars of the points pi with respect to the conic q0.
Then the 10 points Pij ; pi and the 10 lines lij ; li form a Desargues configuration ac-
cording to a theorem proved by von Staudt in 1831 (see [2], p. 62). Using Lemma 4.3
we have the assertion. r

Before we go on, let us note the following characterization of an admissible pencil
of binary quartics, which we need later.

Proposition 4.6. The pencil of binary quartics lf1 þ mf2 with fi ¼
P4

j¼1
4
i

� �
aij t

4
j
0 t

j
1 is

admissible if and only if the discriminant of the binary cubic detðt0q1 þ t1q2Þ is nonzero,

where qi ¼
ai0 ai1 ai2
ai1 ai2 ai3
ai2 ai3 ai4

0B@
1CA is the matrix of the conic associated to fi for i ¼ 1; 2.

Proof. This is a consequence of the fact (see [11], Section 6.3) that the base locus of a
pencil of conics consists of 4 di¤erent points if and only if its discriminant does not
vanish together with Lemma 4.3. r

In order to complete the proof of Theorem 4.1, we need to compute the degree of
the Jacobian map. Note that the binary quartic (2) determines a point in P4 namely
ða0 : . . . : a4Þ. If we consider P4 as the space of quartics, the space of pencils of binary
quartics is Grð1; 4Þ, the Grassmannian of lines in P4. Considering in the same way
the space of binary sextics

P6
i¼0 ait

6
i
0 ti1 as P6, the map associating to every pencil of

quartics its Jacobian defines a morphism

Jac : Grð1; 4Þ ! P6:

Note that Grð1; 4Þ is also of dimension 6. We need the following lemma:
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Lemma 4.7. The Jacobian map Jac : Grð1; 4Þ ! P6 is a ramified covering of degree 5.

Proof. Let lf1 þ mf2 be a pencil of quartics with f1 ¼
P4

i¼1
4
i

� �
ait

4
i
0 ti1 and f2 ¼P4

i¼1
4
i

� �
bit

4
i
0 ti1. Its Jacobian is given by:

Jacð f1; f2Þ ¼ det
qfi

qtj

� �
¼ 16½ p01t60 þ 3p02t50 t1 þ 3ð2p12 þ p03Þt40 t21

þ ð8p13 þ p04Þt30 t31 þ 3ð2p23 þ p14Þt20 t41 þ 3p24t0t51 þ p34t
6
1 �;

where pij :¼ aibj 
 ajbi denotes the Plücker coordinates of the pencil. In particular up
to a constant the Jacobian does not depend on the choice of f1 and f2 and defines a
point Jacðlf1 þ mf2Þ in P6. The explicit form of Jacð f1; f2Þ implies that the map Jac
factorizes via the Plücker embedding p

P9

p
q

Grð1; 4Þ �������!Jac P6

R�������
��!

with a linear projection map q. In fact Jac is given by

lf1 þ mf2 7! ðp01 : 3p02 : 3ð2p12 þ p03Þ : 8p13 þ p04 : 3ð2p23 þ p14Þ : 3p24 : p34Þ A P6:

It is the linear projection of the P9 with coordinates ðp01 : . . . : p34Þ with center the
plane P with equations p01 ¼ p02 ¼ 2p12 þ p03 ¼ 8p13 þ p04 ¼ 2p23 þ p14 ¼ p24 ¼
p34 ¼ 0. On the other hand, the Plücker variety pðGrð1; 4ÞÞ in P9 is given by the
Plücker relations among which there are

p12 p34 
 p13p24 þ p14 p23 ¼ 0

p01 p34 
 p03p14 þ p04 p13 ¼ 0

p01 p23 
 p02p13 þ p03 p12 ¼ 0

Now if ðp01 : . . . : p34Þ A PV pðGrð1; 4ÞÞ, this implies p14p23 ¼ p04p13 ¼ p03p12 ¼ 0,
so all pij ¼ 0. Hence the center of projection P does not intersect the Plücker variety.
This implies that the degree of Jac equals the degree of the Plücker variety pðGrð1; 4ÞÞ
in P9. It is well known that this degree is 5 (see [5], p. 247). Since Jac cannot con-
tract a positive-dimensional subvariety of Grð1; 4Þ this completes the proof of the
lemma. r

Using this we can finally prove Theorem 4.1.

Proof of Theorem 4.1. Since admissibility of a pencil of quartics is an open condition
and the Jacobian map is finite, we conclude from Proposition 4.5 that F is dominant
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and there is an open dense set UHMb
6 such that for every sextic j A U the preimage

Jac
1ð jÞ consists of exactly 5 pencils of quartics. Shrinking U if necessary we may as-
sume according to Remark 3.4 that every Desargues configurationD AF
1ðUÞ admits
5 di¤erent pencils of quartic divisors on the von Staudt conic. Hence for every j A U
the 5 pencils of quartics of any preimage D A F
1ð jÞ must coincide. Thus by Proposi-
tion 4.5 F
1ð jÞ consists only of one Desargues configuration, i.e. F : F
1ðUÞ ! U is
bijective. This implies that F is of degree 1. It remains to show the injectivity.
Since F is a finite birational morphism of normal varieties, the injectivity can only

fail at points p ofMD for which FðpÞ is a singular point ofMb
6 . ButM

b
6 admits only

3 singular points (see [1], Remark 5.4, p. 5551), namely a point of multiplicity 5 rep-
resented by the binary sextic j5 ¼ t60 
 t0t

5
1 , a point of multiplicity 2 represented by

j2 ¼ t60 
 t20 t
4
1 , a point of multiplicity 3 represented by j3 ¼ t50 t1 
 t20 t

4
1 . The moduli

space MD also admits a singular point of multiplicity 5: the Desargues configuration
Dp5 with p5 given by z1 
 mz2 þ m2z3 
 m3z4 ¼ 0, where m is a root of the equation
x4 þ x3 
 x2 þ x
 1 ¼ 0, admits an automorphism of order 5 namely:

0 0 0 1


1 0 0 1

0 
1 0 1

0 0 
1 1

0BBB@
1CCCA:

It permutes the points ei as follows: e1 7! e2 7! e3 7! e4 7! e5 7! e1. It is easy to check
that Dp5 is of multiplicity 5 in MD and that F


1ð j5Þ ¼ Dp5 .
As in Example 5.3 below one checks that all pencils of quartics with Jacobian j2

are not admissible. Hence j2 is not in the image of F. Finally as in Example 5.4 be-
low one checks that only one pencil of quartics with Jacobian j3 is admissible namely
lf3 þ mg3 with f3 ¼ 2t40 þ 6t20 t21 þ 4t0t31 and g3 ¼ 1

16 t
2
0 t
2
1 . Hence F is also injective at

the corresponding point at MD. This completes the proof of the theorem. r

5 The image of the map F

Using the set-up of the last section we are now in a position to prove the following
theorem, which was announced (but not applied) already in Section 3.

Theorem 5.1. For any Desargues configuration D the associated binary sextic J ¼ FðDÞ
is stable.

Proof. Let Jðt0; t1Þ be a nonstable binary sextic, i.e. admitting a root of multiplicity
d3.We choose coordinates in such a way that this root is ð0 : 1Þ. Hence J is of the form

Jðt0; t1Þ ¼ A0t
6
0 þ A1t

5
0 t1 þ A2t

4
0 t
2
1 þ A3t

3
0 t
3
1 :

Suppose lf þ mg with f ¼
P4

i¼1
4
i

� �
ait

4
i
0 ti1 and g ¼

P4
i¼1

4
i

� �
bit

4
i
0 ti1 is a pencil of bi-

nary quartics whose Jacobian is J (up to a nonzero constant). According to the results
of Section 4, it su‰ces to show that lf þ mg is not admissible which according to
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Proposition 4.6 means that detðt0q1 þ t1q2Þ admits a double root where q1 and q2
denote the conics associated to f and g. By the equation for J given in the proof of
Lemma 4.7 the coe‰cients of f and g satisfy the following system of equations

2ða2b3 
 a3b2Þ þ a1b4 
 a4b1 ¼ 0

a2b4 
 a4b2 ¼ 0

a3b4 
 a4b3 ¼ 0

ð3Þ

Assume first that a4 or b40 0. Without loss of generality we may assume that a4 ¼ 1.
Replacing g by g
 b4 f we may assume b4 ¼ 0. But then the system (3) implies b3 ¼
b2 ¼ b1 ¼ 0 and we obtain

detðt0q1 þ t1q2Þ ¼
t0a0 þ t1b0 t0a1 t0a2

t0a1 t0a2 t0a3

t0a2 t0a3 t0

0@ 1A
which has a double root ð0 : 1Þ. Hence a4 ¼ b4 ¼ 0. Then (3) just says

a2b3 
 a3b2 ¼ 0 ð4Þ

If a3 ¼ b3 ¼ 0,

detðt0q1 þ t1q2Þ ¼
t0a0 þ t1b0 t0a1 þ t1b1 t0a2 þ t1b2

t0a1 þ t1b1 t0a2 þ t1b2 0

t0a2 þ t1b2 0 0

0@ 1A
which has a triple root. Finally, again without loss of generality, we may assume that
a3 ¼ 1; b3 ¼ 0. Then (4) implies b2 ¼ 0 and

detðt0q1 þ t1q2Þ ¼
t0a0 þ t1b0 t0a1 þ t1b1 t0a2

t0a1 þ t1b1 t0a2 t0

t0a2 t0 0

0@ 1A
which again has a double root ð0 : 1Þ. This completes the proof of the theorem. r

Theorems 4.1 and 5.1 lead to the question whether the map F :MD ! Mb
6 is sur-

jective. In order to analyze this question, recall that we represented a quartic divisor
on the conic s : x21 
 4x0x2 by the binary quartic:

f ðt0; t1Þ ¼ a0t
4
0 þ 4a1t30 t1 þ 6a2t20 t21 þ 4a3t0t31 þ a4t

4
1

and the conic associated to it was given by the matrix

a0 a1 a2

a1 a2 a3

a2 a3 a4

0@ 1A. We are identi-
fying in this way the projective space P4 ¼ P4ða0 : . . . : a4Þ of binary quartics with the
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P4 of conics apolar to the conic s. Similarly we consider Grð1; 4Þ as a space of pencils
of conics. Hence we get a map

Jac : Grð1; 4Þ ! P6

associating to every pencil of conics apolar to s the Jacobian of its associated pencil
of binary quartics. According to the definition of the map F a binary sextic j is in the
image of F if and only if the preimage Jac
1ð jÞ (which consists of 5 pencils counted
with multiplicities) consists not only of special pencils of conics, i.e. pencils of conics
lq1 þ mq2 such that detðlq1 þ mq2Þ admits a multiple root ðl : mÞ. Let DHGrð1; 4Þ
denote the hypersurface of Grð1; 4Þ given by the equation

discrðdetðlq1 þ mq2ÞÞ ¼ 0

Jac being a finite morphism, the image JacðDÞ is a hypersurface in P6. If U denotes
the open set of P6 parametrizing stable sextics and r : U ! Mb

6 the natural projec-
tion, it is easy to see that also

H :¼ pðJacðDÞVUÞ

is a hypersurface inMb
6 . We obtain

Proposition 5.2. The image imðFÞ of F satisfies

Mb
6 nHH imðFÞHMb

6 :

The following two examples show that both inclusions are strict, i.e. imðFÞ0Mb
6

and Mb
6 nH0 imðFÞ.

Example 5.3. Consider the binary sextic

j0 ¼ 
16t61 
 48t40 t21 þ 128t30 t31 
 48t20 t41 
 16t61 :

Jac
1ð j0Þ contains the following 3 pencils of conics pi ¼ lqi1 þ mqi2, ði ¼ 1; 2; 3) with

q11 ¼

1 0 0

0 0 0

0 0 1

0@ 1A q12 ¼

8 1 0

1 0 1

0 1 0

0@ 1A

q21 ¼
1 1 
1
1 
1 0


1 0 1

0@ 1A q22 ¼
0 1 0

1 0 1

0 1 0

0@ 1A

q31 ¼

1 1 0

1 0 0

0 0 1

0@ 1A q32 ¼
0 1 0

1 0 1

0 1 0

0@ 1A
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Since the Jacobian matrix of the map Jac : Grð1; 4Þ ! P6 at the points p1; p2; p3 of
Grð1; 4Þ is of rank 5; 6; 5 the pencils p1 and p3 are in the ramification locus of Jac.
Hence Jac
1ð j0Þ ¼ fp1; p2; p3g. Now it is easy to check that discrðdetðlqi1 þ mqi2ÞÞ ¼ 0
for i ¼ 1; 2; 3. Hence there is no Desargues configuration Dp with FðDpÞ ¼ j0.

Example 5.4. Consider the binary sextic

j1 ¼ 48t50 t1 þ 48t20 t41

Jac
1ð j1Þ contains the 2 pencils of conics pi ¼ lqi1 þ mqi2, ði ¼ 1; 2) with

q11 ¼
2
ffiffiffiffiffiffiffi

23

p
1 1

8

ffiffiffi
43

p

1 1
8

ffiffiffi
43

p
1
4

ffiffiffiffiffiffiffi

23

p

1
8

ffiffiffi
43

p
1
4

ffiffiffiffiffiffiffi

23

p
1

0B@
1CA q12 ¼

2
ffiffiffiffiffiffiffi

23

p

1 0


1 0 0

0 0 0

0B@
1CA

q21 ¼
1 0 1

0 1 
1
2

1 
1
2 0

0B@
1CA q22 ¼

0 0 1

0 1 0

1 0 0

0@ 1A
One easily checks discrðdetðlq11 þ mq12ÞÞ ¼ 0 and discrðdetðlq21 þ mq22ÞÞ0 0. So
lq21 þ mq22 comes from a Desargues configuration, whereas lq11 þ mq12 does not. This
implies j1 A imðFÞ, but j1 A H.

6 Special Desargues configurations

Consider the 10 points in P3

S12 :¼ e1e2 V e3e4e5 ¼ ð1 : 1 : 0 : 0Þ S34 :¼ e3e4 V e1e2e5 ¼ ð0 : 0 : 1 : 1Þ

S13 :¼ e1e3 V e2e4e5 ¼ ð1 : 0 : 1 : 0Þ S15 :¼ e1e5 V e2e3e4 ¼ ð0 : 1 : 1 : 1Þ

S14 :¼ e1e4 V e2e3e5 ¼ ð1 : 0 : 0 : 1Þ S25 :¼ e2e5 V e1e3e4 ¼ ð1 : 0 : 1 : 1Þ

S23 :¼ e2e3 V e1e4e5 ¼ ð0 : 1 : 1 : 0Þ S35 :¼ e3e5 V e1e2e4 ¼ ð1 : 1 : 0 : 1Þ

S24 :¼ e2e4 V e1e3e5 ¼ ð0 : 1 : 0 : 1Þ S34 :¼ e3e4 V e1e2e5 ¼ ð1 : 1 : 1 : 0Þ

Recall that a Desargues configuration Dp is special if and only if the plane p contains
one of the points Sij (and no point ei). The following theorem gives a characterization
of special Desargues configurations in terms of their associated binary sextics.

Theorem 6.1. For a Desargues configuration Dp the following statements are equivalent:

(1) Dp is a special Desargues configuration.

(2) The binary sextic FðDpÞ admits a double point.
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Proof. Suppose p given by f ðzÞ ¼
P4

i¼1 aizi ¼ 0 is a nondegenerate plane in P3, such
that FðDpÞ admits a double point. According to Theorem 3.2 FðDpÞ is the sextic
divisor on the von Staudt conic defined by the complete intersection Ið f ; g; hÞ with
gðzÞ ¼

P4
i¼1 aiz

2
i ¼ 0 and hðzÞ ¼

P4
i¼1 aiz

3
i ¼ 0. A point on this complete intersection

scheme is a double point if and only if the rank of the Jacobian matrix Jð f ; g; hÞ is
c2 at this point. But

Jð f ; g; hÞ ¼
df

dg

dh

0@ 1A ¼
a1 a2 a3 a4

2a1z1 2a2z2 2a3z3 2a4z4

3a1z
2
1 3a2z

2
2 3a3z

2
3 3a4z

2
4

0@ 1A

So rkðJð f ; g; hÞÞ ¼ rk

1 1 1 1

z1 z2 z3 z4

z21 z22 z23 z24

0@ 1Ac 2 if and only if

det

1 1 1 1

z1 z2 z3 z4

z21 z22 z23 z24

0@ 1A with i-th column omitted

8<:
9=; ¼ 0

for i ¼ 1; . . . ; 4. But these are Vandermonde determinants. Hence ðz1 : . . . : z4Þ A
FðDpÞ is a double point if and only if it satisfies the following system of equations

ðz1 
 z2Þðz1 
 z3Þðz2 
 z3Þ ¼ 0

ðz1 
 z2Þðz1 
 z4Þðz2 
 z4Þ ¼ 0

ðz1 
 z3Þðz1 
 z4Þðz3 
 z4Þ ¼ 0

ðz2 
 z3Þðz2 
 z4Þðz3 
 z4Þ ¼ 0

8>>><>>>:
The solutions of the system above are exactly the points in P3 with 3 equal coordinates
or two pairs of equal coordinates. So after normalizing one type of such points is rep-
resented by ð1 : 1 : 1 : gÞ and the other by ð1 : 1 : g : gÞ with g A C. Such a point is
contained in the complete intersection Ið f ; g; hÞ if and only if g ¼ 1 or g ¼ 0. If g ¼ 1
then sp contains the point e5, so p is degenerate. If g ¼ 0 then the ðz1 : . . . : z4Þ is one
of the 10 points Sij as above. We conclude that FðDpÞ admits a double point if and
only if Dp is special. r

Remark 6.2. In the same way one can show that a Desargues configuration Dp admits
2 (respectively 3) lines containing 4 points if and only if FðDpÞ admits 2 (respectively
3) double points.

7 Degenerate Desargues configuration

In this section we study an extension of the map F :MD ! Mb
6 to a holomorphic map

F : U ! Mb
6 where U is an open set withMDHUHMD, where the first inclusion is
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strict. First we have to define the von Staudt conic for degenerate Desargues config-
urations.
Recall that the von Staudt conic of a non-degenerate Desargues configuration Dp

is defined by the fact that the map associating to every point pij in Dp the line lklm with
complementary indices is a polarity. This definition can be generalized verbatim to
the case of generalized Desargues configurations. One only has to add that if 2 points
pij and pkl coincide, no line is associated to them.
To be more precise, let Dp be of the first kind, i.e. Dp contains exactly one of the

points ei. For the sake of notational simplicity we assume that e5 A p (see Figure 3). In
this case the map associating to pij ði; j0 5Þ the line lkl5 is just given by the involution
{ on the pencil of lines through e5 given by the fact that Dp is a limit of Desargues
configurations (see Section 1). This involution has 2 fixed lines and their union is the
von Staudt conic sp.
Let now Dp be of the second kind. Without loss of generality, we assume the case

of Figure 4, i.e. e4 and e5 A p. There are only 3 points apart from e4 and e5 namely p12,
p13 and p23. To p12 the line l345 is associated, to p13 the line l245 and to p23 the line
l145. But these 3 lines coincide with e4e5. Hence the von Staudt conic sp in this case is
the double line e4e5.
Finally if Dp is of the third kind, there are 3 points in the plane p to which no line is

associated. This implies that the von Staudt conic sp is the zero conic, i.e. the whole
plane p. Note that if Dp is of the i-th kind, the rank of the conic is 3
 i. Analogously
to Lemma 3.1 we have:

Lemma 7.1. Suppose Dp is a degenerate Desargues configuration. The von Staudt conic
sp of Dp is given by the equation

P4
i¼1 aiz

2
i ¼ 0 in the plane p ¼

P4
i¼1 aizi ¼ 0.

Proof. One can prove this either in the same way as Lemma 3.1 using an analogous
version of Reyes remark (see proof of Lemma 3.1) or just check it by computation: If
Dp is degenerate of the first kind with say e4 A p, i.e. p is given by a1z1 þ a2z2 þ a3z3 ¼
0 with a1; a2; a3;

P3
iþ1 ai0 0, the two fixed lines of the involution on the pencil of

lines with centre e4 are

l1 : ð
a1a2a3 
 a2
ffiffiffiffi
D

p
Þz2 
 ð
a1a2a3 þ a3

ffiffiffiffi
D

p
Þz3 ¼ 0 ð5Þ

and

l2 : ð
a1a2a3 þ a2
ffiffiffiffi
D

p
Þz2 
 ð
a1a2a3 
 a3

ffiffiffiffi
D

p
Þz3 ¼ 0

with D ¼ 
a1a2a3ða1 þ a2 þ a3Þ0 0. One only has to check that the ideal ð
P3

i¼1 aizi;
l1:l2Þ coincides with the ideal of sp.
If Dp is degenerate of the second kind with say e3; e4 A p one easily checks that

ða1z1 þ a2z2; a1z
2
1 þ a2z

2
2Þ is the ideal of the double line sp ¼ 2e3e4. Finally if Dp is

degenerate of the third kind with say e1; e2; e3 A p, then ða1z1; a1z21Þ is the ideal of the
whole plane p. r
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In order to investigate a possible extension of the map F :MD ! Mb
6 , recall its

definition. Consider a Desargues configuration with von Staudt conic sp. The pencil
of conics passing through a complete quadrangle of Dp restricts to a pencil of quartic
divisors in sp whose Jacobian is a stable sextic J independent of the choice of com-
plete quadrangle and we defined FðDpÞ ¼ J. Note that J was given by

P4
i¼1 aizi ¼P4

i¼1 aiz
2
i ¼

P4
i¼1 aiz

3
i ¼ 0, if p :

P4
i¼1 aizi ¼ 0. Now if Dp is degenerate of the first

kind (respectively second) kind, Dp admits still 4 (respectively 3) complete quadran-
gles. Restricting the pencil of conics passing through one of them to the von Staudt
conic sp, its Jacobian is still a sextic divisor on sp. The same proof as for Theorem 3.1
also gives in this situation that the sextic divisor on sp is independent of the choice of
the complete quadrangle and given by the equations

X4
i¼1

aizi ¼
X4
i¼1

aiz
2
i ¼

X4
i¼1

aiz
3
i ¼ 0; ð6Þ

if p :
P4

i¼1 aizi ¼ 0. (Notice that the di¤erence to the above situation is that one (or
two) of the constants a1; . . . ; a4; a1 þ � � � þ a4 vanishes.) Now if Dp is of the first kind,
the von Staudt conic is the union of two lines which intersect in a point, say p0 A p

and it is easy to check that the divisor jp on sp given by Equations (6) is 6p0. If Dp is
of the second kind, the von Staudt conic is a double line sp ¼ 2lp and it is easy to see
that the zero set of (6) is the whole line lp. In the first case jp can be interpreted as
the sextic with a 6-fold point and in the second case not a sextic at all. In any case jp
cannot (at least not in an obvious way) be interpreted as a semistable binary sextic.
This means that the geometric definition of the map F does not extend to degenerate
Desargues configurations.

Remark 7.2. At first sight this seems to contradict the fact that the rational map
F :MD � � � ! Mb

6 is a morphism outside a subvariety of codimensiond 2. The ex-
planation comes from the fact that the space of all binary sextics is not separated.
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