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Abstract. A vanishing theorem for numerically connected divisors, first given by Bombieri for
surfaces, is established in any dimension. A definition of k-connected divisors is proposed, then
such divisors on threefolds are studied.

1 Introduction

Before the coming of Q-divisors and of the Kawamata–Viehweg theorem, Bombieri
[4] noted a vanishing theorem, to whose e¤ect h1ðIDÞ ¼ 0, for any numerically con-
nected divisor D on a smooth surface S, with D2 > 0.

The notion of numerically connected divisor, due to Franchetta [6], is an algebraic
analogue of topological connectedness—it basically reduces to the latter when D has
no multiple components. It should be remarked that the vanishing theorem cited
above had already been stated by Franchetta [7], albeit not in the language of coho-
mology.

In the case of surfaces, it makes sense to strengthen the notion of numerical con-
nectedness into that of k-connectedness, introduced by Bombieri [4], k being a measure
of how connected the divisor D is.

A few years later, van de Ven [18] proved that every very ample divisor on a sur-
face is 2-connected, with only two exceptions.

Nowadays the Kawamata–Viehweg theorem gives much stronger vanishings, but
they come at a price: the divisor D must be nef and big; also, the proof requires the
full force of Q-divisor techniques (see e.g. [15]).

In the present paper, we generalize both Bombieri’s and van de Ven’s theorems by
using a more down-to-earth approach. Indeed we prove that, for a numerically con-
nected divisor D on a smooth n-dimensional variety X, h1ðIDÞ ¼ 0, provided that
Dn > 0 and h0ðDÞd 3. Subsequently, we introduce the notion of k-connected divi-
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sors for higher dimensional varieties, which reduce to Bombieri’s in the case of sur-
faces. Equipped with this definition, we prove that every very ample divisor on a
smooth threefold is 3-connected, but for a finite number of exceptions, which are
completely described.

In some more detail, the paper is organized as follows.
In the second section we prove that, for any numerically connected divisor D

on a smooth projective n-dimensional variety X HPN , h1ðIDÞ ¼ 0, if Dn > 0 and
h0ðDÞd 3. This is a consequence of the following fact: if h0ðDÞd 3 and jDj is not
compounded with a pencil, then h1ðIDÞ ¼ h1ðD;ODÞ � 1. The idea of the proof is
essentially that the curves C ¼ E V y, where E A jDj and y A GðN � nþ 2;NÞ, are
generically reduced and irreducible, so the images of the Albanese groups Albð ~CCÞ of
their normalizations ~CC into AlbðXÞ are a continuous family of subtori, hence they are
indeed a constant subgroup K of AlbðX Þ; since the curves C sweep out a Zariski open
subset of X, this fact forces K to be the whole of AlbðXÞ, which in turn implies our
statement.

The third section is devoted to the study of connected divisors on threefolds: we
give a complete description of all very ample divisors on threefolds which are not 3-
connected. Also in this case the proof is quite direct. We first give a uniform bound
on the degree of threefolds admitting a very ample divisor which is not 3-connected.
Then we plunge ourselves in the botany of algebraic varieties of low degree: by using
Ionescu’s classifications of such threefolds [12] and [13], we make a short list of the
possible candidates for this kind of varieties, then we analyze them one by one, in
order to find actual instances of such behavior. The analysis is essentially based on the
study of their Picard groups, to find a divisor with a ‘‘wrong’’ (i.e. not 3-connected)
decomposition.

Acknowledgments. The authors thank Elisabetta Colombo, Gianluca Occhetta and
especially Antonio Lanteri for helpful discussions on the topics of this paper. Also,
Ciro Ciliberto supplied useful pointers to the relevant literature.

2 Generalization of a theorem of Bombieri’s

The goal of this paragraph is to generalize a result of Bombieri (and Franchetta), [4],
Section 3, Theorems A and B.

In what follows X is an n-dimensional smooth projective variety, nd 3, and DHX

is an e¤ective divisor.

Theorem 2.1. If h0ðDÞd 3 and jDj is not compounded with a pencil, then h1ðX ;IDÞ ¼
h0ðD;ODÞ � 1.

We need the following elementary

Lemma 2.2. Let CHX be a reduced irreducible curve, then the image of the natural

map j� : H 1ðC;OCÞ� ! AlbðXÞ is a closed subgroup.
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Proof. The natural map is defined as follows: C ,! X induces H 1ðX ;OX Þ !
H 1ðC;OCÞ, hence, by duality and conjugation, H 1ðC;OCÞ� ! H 1ðX ;OX Þ�; since X

is Kähler, the Hodge theorem gives the identification H 1ðX ;OX Þ� ¼ Hn�1;nðX Þ; the
composition with the projection Hn�1;nðXÞ ! H n�1; nðXÞ

H1ðX ;ZÞ ¼ AlbðXÞ gives the map

j� : H 1ðC;OCÞ� ! AlbðXÞ. It is now clear that Imð j�Þ is a subgroup; we must prove
that it is closed. Let ~CC ! C be the normalization of C; by reasoning as before, there
is a map f� : H

0;1ð ~CCÞ ! H 1ðC;OCÞ�, thus we obtain a diagram

H 0;1ð ~CCÞ???y
f�

Albð ~CCÞ H 1ðX ;OX Þ� ���! Hn�1;nðX Þ

f�

???yj�

AlbðX Þ

????????y

? ?? ??? ?? y

? ?? ?? ?? ?y
????????y

which is commutative because of the functoriality of Alb. It follows that Imð j�Þ ¼
f�ðAlbð ~CCÞÞ, which is closed because f� : Albð ~CCÞ ! AlbðX Þ is a continuous map of
compact spaces. r

We also need the following well-known results.

Theorem 2.3 (Chow’s theorem). Any continuous family of closed subgroups of a torus

is constant.

Proof. [14], Theorem II.5. r

Theorem 2.4 (Second Bertini theorem). Let jEj be a complete linear system without

fixed components on a smooth complete variety Y; if dim ijEjðYÞd 2 (i.e. jEj is not

compounded with a pencil ) then every divisor of jEj is connected and the generic one is

irreducible.

Proof. [11], Theorem 7.9. r

Proof of Theorem 2.1. Suppose that X HPNðCÞ and dimX ¼ n.

Step 1. From 0 ! ID ! OX ! OD ! 0 we get 0 ! H 0ðX ;IDÞ ! H 0ðX ;OX Þ !
H 0ðD;ODÞ ! H 1ðX ; IDÞ ! kerfH 1ðX ;OX Þ ! H 1ðD;ODÞg; since H 0ðX ;IDÞ ¼
H 0ðX ;�DÞ ¼ 0 because D is e¤ective, and H 0ðX ;OX Þ ¼ C, it is enough to prove
that H 1ðX ;OX Þ ! H 1ðD;ODÞ is injective; in turn, if CHD is a (reduced irreducible)
curve, from
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H 1ðX ;OX Þ ���! H 1ðD;ODÞ???y
H 1ðC;OCÞ

?? ?? ?? ??y

it follows that it su‰ces to prove that H 1ðX ;OX Þ ! H 1ðC;OCÞ is injective.

Step 2. Let B :¼ jDj � GðN � nþ 2;NÞ, and let V JB be the subset of elements
ðE; yÞ A B such that E V y is an integral curve. If jDj has no fixed components from
the second Bertini theorem it follows that V is a Zariski open subset of B. If not, we
can substitute jDj with its moving part jD 0j, and the proof works in any case. For any

b ¼ ðE; yÞ A B, write Cb :¼ E V y, then F ¼ f j�ðH 1ðCb;OCb
Þ�Þgb AV is an algebraic

family of closed subgroups of AlbðX Þ, hence, by Chow’s theorem, j�ðH 1ðCb;OCb
Þ�Þ

is a constant closed subgroup, call it K, of AlbðXÞ.

Step 3. Set Sp :¼ fb A B j p A Cbg, for all p A X . Clearly, Sp VSq ¼ jDjðp; qÞ � ðp; qÞ�,
where jDjðp; qÞ ¼ fE A jDj j p; q A Eg and ðp; qÞ� ¼ fy A GðN � nþ 2;NÞ j p; q A yg.
Since h0ðDÞd 3 and N � nþ 2d 3, we see that jDjðp; qÞ � ðp; qÞ� has positive di-
mension. An integral curve GHDHX , G passing through p and q, with D A jDj,
exists if and only if Sp VSq UB� V , and the latter is a closed condition, hence W :¼
fðp; qÞ jSp VSq VV 0qg is a Zariski open subset of X � X , i.e. for all ðp; qÞ A W ,
there exists a curve in the family fCbgb AV connecting them.

Step 4. Let o : X ! AlbðX Þ be the Albanese map (with respect to a fixed base
point), and let W : ðp; qÞ A X � X ! oðpÞ � oðqÞ A AlbðXÞ; it is well-known that
ImðWÞ generates AlbðX Þ, as a group, moreover, W is a closed map, because it is
continuous between compact spaces. Now, for all ðp; qÞ A W , Wðp; qÞ ¼ oðpÞ�
oðqÞ A j�ðH 1ðCb;OCb

Þ�Þ ¼ K ; it follows thatWðWÞJK , soWðX � X Þ ¼ WðWÞJK ,
because W is a closed map and K is a closed subgroup. But WðX � XÞ generates
AlbðXÞ, hence K ¼ AlbðX Þ.

Conclusion. We have found an integral curve (indeed a family of them) CHX

such that the map j� : H 1ðC;OCÞ� ! AlbðX Þ is surjective; since dimAlbðXÞ ¼
dimHn�1;nðX Þ, also the map H 1ðC;OCÞ� ! Hn�1;nðXÞ is surjective, hence
H 1ðX ;OX Þ ! H 1ðC;OCÞ is injective and the theorem is proved. r

We can now extend Bombieri’s theorem to n-dimensional varieties.

Definition 2.1. Let D be an e¤ective divisor of a n-dimensional variety X, nd 2. D is
called numerically connected if there exists an ample divisor H such that, for any de-
composition D ¼ D1 þD2 with D1 and D2 e¤ective, H

n�2D1D2 > 0.

Lemma 2.5. If D is a numerically connected divisor on a smooth variety X, then

h0ðD;ODÞ ¼ 1.

Proof. [17], Lemma 3. r
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Corollary 2.6. Let X be a smooth n-dimensional variety and let D be a numerically

connected divisor of X such that h0ðX ;DÞd 3 and Dn > 0, then h1ðX ;�DÞ ¼ 0.

Proof. As Dn > 0, jDj is not compounded with a pencil. By the previous theorem and
lemma we have then h1ðX ;�DÞ ¼ h0ðD;ODÞ � 1 ¼ 0. r

Remark 2.1. Among the hypotheses of the previous corollary, only the numerical
connectedness refers specifically to the divisor D, as opposed to the linear series jDj.
But D is not numerically connected only if it is not topologically connected or has
multiple components; furthermore, D is a moving divisor, i.e. h0ðDÞ > 1, thus, by the
second Bertini theorem, the generic element of jDj is irreducible and reduced outside
the fixed component, if any; the upshot is that Corollary 2.6 holds if we replace nu-
merical connectedness with the hypothesis that jDj has no fixed component.

Now, a divisor D such that h0ðDÞd 3, Dn > 0 and jDj has no fixed component is
very close to being nef and big, so in this case Corollary 2.6 is a weak form of the
Kawamata–Viehweg theorem, but its proof avoids the use of Q-divisors.

Note also that the hypothesisDn > 0 is used only to say that jDj is not compounded
of a pencil, so if we substitute it with the latter, Corollary 2.6 is not a consequence of
Kawamata–Viehweg theorem any longer. This last form is basically the one stated by
Franchetta [7] in the case of surfaces.

3 Connected divisors on threefolds

In [18], in order to study the spannedness of adjoint divisors on a surface with the
help of the Bombieri–Franchetta theorem, the author shows that every very ample
divisor on a surface is 2-connected, with some exceptions (see [18] theorem I), ac-
cording to the following definition of Bombieri.

Definition 3.1. An e¤ective divisor D on a smooth surface S is k-connected if for any
decomposition D ¼ D1 þD2 with D1 and D2 e¤ective, D1D2 d k.

In this paragraph we want to generalize van de Ven’s theorem to threefolds. In order
to do so we need a good definition of k-connectedness for e¤ective divisors on higher
dimensional manifolds, for which we propose the following.

Definition 3.2. Let X be a n-dimensional smooth variety and let D be an e¤ective di-
visor on X. We say that D is k-connected if for any decomposition D ¼ D1 þD2 with
D1 and D2 e¤ective, we have D

n�2D1D2 d k.

Remark 3.1. (i) Of course, in the case of a surface, the previous definition is in agree-
ment with Bombieri’s; it is unfortunate though that, in dimension greater than 2, a k-
connected divisor is not in general numerically connected, unless it is ample.

(ii) When X is a 3-fold, by the previous definition it is obvious that, if a very ample
divisor D is not k-connected, then there exists a generic hyperplane section S A jDj and
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a very ample divisor DjS which is not k-connected. Unfortunately we cannot use the
results on this topic contained in [1] to study the k-connectedness on X because, as we
shall see, it involves 3-folds of low degree which are outside of the range considered
in [1].

We fix now some notation that we use throughout this section.

Notation.

ðX ;DÞ (3-dimensional smooth variety; very ample divisor)
Pn the ambient space of X;
d ¼ D3 the degree of X;
g ¼ gðX Þ the sectional genus of X;
S the generic hyperplane section of X;
PicðX Þ the Picard group of the variety X;
NumðX Þ the additive group of divisors of X modulo numerical equivalence;
1 numerical equivalence of divisors;
PðEÞ projectivization of the vector bundle E over a variety B;
T its tautological bundle;
p the natural projection of PðEÞ onto B.

Now we can proceed to generalize van de Ven’s theorem, and first of all we prove
some lemmata.

Lemma 3.1. Let X ¼ PðEÞ over a smooth curve C (rankðEÞ ¼ 3). Assume that X is

embedded in Pn as a scroll by the very ample tautological divisor D ¼ T , then T is

never 2-connected.

Proof. Let F be the numerical class of a fibre. Since any fibre is embedded as a
two dimensional linear space, there is always a hyperplane in Pn containing it. For
any P A C, the elements of jD� FPj correspond to the hyperplanes containing the
fibre FP, hence D� FP is e¤ective and we have the e¤ective decomposition T ¼
D1 þD2 with D1 1T � F and D2 1F in NumðXÞ. Now we can compute TD1D2 ¼
TðT � F ÞF ¼ T 2F ¼ 1. r

Remark 3.2. (i) It is easy to see that if X is a 3-dimensional scroll over a curve C

there are only two possible e¤ective decompositions D ¼ T ¼ D1 þD2 such that
TD1D2 c 2, namely D1 1T � F and D2 1F , or D1 1T � 2F and D2 1 2F ; in the
first case DD1D2 ¼ 1, in the second case DD1D2 ¼ 2.

(ii) Note that Lemma 3.1 holds for any rank rd 2. Indeed the decomposition
T ¼ D1 þD2, with D1 1T � F and D2 1F , is still possible for any rank and
T r�2ðT � FÞF ¼ T r�1F ¼ 1.

If X is a quadric fibration over a smooth curve C, then there exists a rank 4 vector
bundle E over C such that X is a divisor in W :¼ PðEÞ; moreover D is the restriction
to X of the tautological divisor T of W, NumðWÞ is generated by T and the class F of
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a fibre, and X 1 2T þ bF in NumðWÞ for a suitable integer b (see [9], p. 135). For
such varieties we can prove the following lemma.

Lemma 3.2. Let X be a quadric fibration over a smooth curve C. Then D is never

3-connected.
If NumðXÞFZlZ ¼ hTjX ;FjXi, then any e¤ective decomposition D ¼ D1 þD2

with DD1D2 ¼ 2 is of type D1 1TjX � FjX , D2 1FjX .
NumðXÞFZlZ ¼ hTjX ;FjXi when C is rational and X has at least one singular

fibre.

Proof. For any P A C the sections of the divisor TjX � FP jX correspond to the hyper-
planes of Pn containing FP, so the divisor is always e¤ective and if we choose
D1 1TjX � FjX , D2 1FjXT then DD1D2 ¼ TjX ðTjX � FjX ÞFjX ¼ TðT � FÞFð2T þ
bF Þ ¼ 2.

If NumðXÞFZlZ¼hTjX ;FjXi, any e¤ective decomposition TjX ¼D¼D1þD2 is
of type D1 1 aTjX þ bFjX 1 ðaT þ bFÞjX and D2 1 gTjX þ dFjX 1 ðgT þ dFÞjX in

NumðX Þ with aþ g ¼ 1, b þ d ¼ 0, ad 0, gd 0. Hence we can assume D1 1TjX �
hFjX , D2 1 hFjX with hd 1, and we can compute DD1D2 ¼ TX ðTjX � hFjX ÞhFjX ¼
TðT � hF ÞhF ð2T þ bF Þ ¼ 2h so that DD1D2 ¼ 2 implies h ¼ 1.

From [12] (see Lemma 3.8 and Proposition 0.6) we know that PicðX Þ ¼ NumðXÞ ¼
hTjX ;FjXi when C is rational and the fibration has at least one singular fibre. r

Lemma 3.3. If d c 4, then the divisor D is 2-connected, unless X is a scroll over a curve

and D its tautological divisor.

Proof. To prove the lemma it su‰ces to consider only linearly normal 3-dimensional
varieties such that d c 4. Looking at the well-known list of such varieties contained
in [12], one sees that X is a hypersurface, a complete intersection or a scroll over a
curve. When X is either a hypersurface in Pr with rd 4 or a complete intersection
with dimðXÞd 3, we have that PicðXÞFZ, generated by the hyperplane section D.
In these cases there are no e¤ective decompositions D ¼ D1 þD2 as D generates
PicðX Þ. If X is a scroll we can use Lemma 3.1. r

Remark 3.3. Note that the previous lemma is still true when dimðXÞd 4. Indeed [12]
shows that, when dimðXÞd 4 and degðX Þc 4, X is a hypersurface, a complete in-
tersection or a scroll over a curve. In the first cases one can argue as above, in the last
case one can use Remark 3.2 (ii).

Lemma 3.4. Assume that there exists an e¤ective divisor H such that HD2 ¼ 1 and

H 2D ¼ 0, then X ¼ PðEÞ for a suitable rank 3 vector bundle over a smooth curve C, D
is the tautological divisor T and H is numerically equivalent to a fibre.

Proof. Obviously the couple ðX ;DÞ is neither ðP3;OP3ð1ÞÞ nor ðQ3;OQ3
ð1ÞÞ, hence,

by Theorems (11.2) and (11.7) of [9], to prove that ðX ;DÞ ¼ ðPðEÞ;TÞ, it is enough
to show that KX þ 2D is not nef.
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Let S be a smooth element of jDj; it su‰ces to show that ðKX þ 2DÞjS ¼ KS þDjS
is not nef. By assumptions ðHjSÞ2 ¼ 0 and HjSDjS ¼ 1 so that by Proposition 1 of
[18] S is a (blown-up) ruled surface and HjS is a fibre of a (blown-up) ruling of S.
It is well known that, in this situation, KS 1�2s�C0 þ as�f þ E1 þ 
 
 
 þ Ek, DjS 1
s�C0 þ bs�f þ g1E1 þ 
 
 
 þ gkEk, HjS 1 s�f for suitable integers a; b; gi where s is
the blowing up, Ei the exceptional divisors, and C0 and f generate the numerical
equivalence group of the minimal model of S. So we get that KS þDjS is not nef as
ðKS þDjSÞHjS ¼ �1.

Now we have only to show that H is numerically equivalent to a fibre. Since
NumðX Þ ¼ hT ;Fi, we have H1 aT þ bF for suitable integers a, b. The hypotheses
imply that aT 3 þ b¼ 1 and a2T 3 þ 2ab¼ 0, as T 2F ¼ 1. Hence aþ ab¼ 0. If b¼�1,
we have T 3 ¼ 1 or T 3 ¼ 2, which is not possible, as ðX ;TÞ is not ðP3;OP3ð1ÞÞ nor
ðQ3;OQ3

ð1ÞÞ. Therefore a ¼ 0, b ¼ 1. r

Proposition 3.5. Suppose that (i) d d 5, (ii) there exists an e¤ective divisor H such that

HD2 ¼ 2, H 2D ¼ 0 and (iii) for a generic element S A jDj, either HjS is a smooth conic,
or HjS ¼ h1 þ h2 is a singular reduced conic with h21 ¼ h22 ¼ �1. Then one of the fol-

lowing happens:

a) X ¼ PðEÞ for a suitable rank 3 vector bundle over a smooth curve C, D is the tau-

tological divisor T and H is numerically equivalent to two fibres;

b) X is a quadric fibration over a smooth curve C, and H is a fibre.

Proof. As in the previous proof if KX þ 2D is not nef we get that ðX ;DÞ ¼ ðPðEÞ;TÞ.
In this case we have only to show that H is numerically equivalent to two fibres.
NumðX Þ ¼ hT ;Fi, so that H1 aT þ bF for a; b suitable integers. By assumptions
we get: aT 3 þ b ¼ 2 and a2T 3 þ 2ab ¼ 0 as T 2F ¼ 1. Hence 2aþ ab ¼ 0. If b ¼ �2
we have aT 3 ¼ 4 hence d c 4 which is not possible. Therefore a ¼ 0, b ¼ 2.

If KX þ 2D ¼ 0, then X is a Del Pezzo 3-fold and 5c d c 8 (see [9], pp. 45 and
72), moreover: if d ¼ 5, X is the intersection of Gð1; 4Þ in P9 with 3 general hyper-
planes; if d ¼ 6, X is either the Segre embedding of P1 � P1 � P1 or PðTP2Þ,
embedded by its tautological divisor; if d ¼ 7, X is the blow-up s of P3 at one
point, D ¼ 2s�L� E; (hLi ¼ PicðP3Þ, E the exceptional divisor); if d ¼ 8, ðX ;DÞ ¼
ðP3;OP3ð2ÞÞ. Now it is easy to see that an e¤ective divisor H satisfying the assump-
tions does not exist in every case but only for X ¼ P1 � P1 � P1, which is a quadric
fibration, and if H is a fibre, i.e. we get case b). From now on we can assume that
KX þ 2D0 0.

If KX þ 2D is nef, it is also e¤ective and spanned, by Corollary 9.2.3 of [3], and we
can consider the adjunction morphism F :¼ FjKXþ2Dj.

Now let S be a smooth element of jDj, then ðKX þ 2DÞjS ¼ KS þDjS; so the re-
striction FjS is the adjunction morphism for S. By assumptions ðHjSÞ2 ¼ 0 and if HjS
is a smooth conic, by Proposition 1 of [18], S is a (blown-up) ruled surface and HjS is
a fibre of a (blown-up) ruling of S. If HjS ¼ h1 þ h2 is the union of two ð�1Þ lines
intersecting at one point, let j : S ! S 0 be the contraction of h1. S

0 is a smooth sur-
face and jðh2Þ is a smooth rational curve on S 0 such that ðjðh2ÞÞ2 ¼ 0. By Proposi-
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tion 1 of [18], S 0 is a (blown-up) ruled surface and jðh2Þ is a fibre of a (blown-up)
ruling of S 0. Then S is a blown-up ruled surface, at one point at least, and HjS is a
fibre of a blown-up ruling of S.

It is well known that, in this situation, KS 1�2s�C0 þ as�f þE1 þ 
 
 
 þEk,DjS 1
2s�C0 þ bs�f þ g1E1 þ 
 
 
 þ gkEk, HjS 1 s�f for suitable integers a, b, gi where s is
the blowing up, Ei the exceptional divisors, and C0 and f generate the numerical
equivalence group of the minimal model of S. So we get that ðKS þDjSÞs�f ¼ 0.
Now KS þDjS 0 0 as KX þ 2D0 0, hence FjS is a fibration, so dimðImFÞ ¼ 1 and
by Theorem 11.2.4 of [3] we get case b). r

Now we can prove the following theorem:

Theorem 3.6. Let D be a very ample divisor on a smooth 3-dimensional variety X. Then
D is 2-connected unless X is a scroll over a curve and D is the tautological divisor.

Proof. Let D ¼ D1 þD2 be an e¤ective decomposition of D. Put a ¼ DD2
1 , b ¼

DD1D2, c ¼ DD2
2 so that d ¼ degðXÞ ¼ D3 ¼ aþ 2bþ c > 0. If X is not 2-connected,

then bc 1. Note that ðD1 þD2ÞD1D ¼ aþ b > 0 and ðD1 þD2ÞD2D ¼ bþ c > 0
therefore ad 0 and cd 0. We can assume that a > 0 or c > 0 otherwise degðXÞc 2
and we can use Lemma 3.3. Say a > 0 and let S be a smooth element of jDj and
let us consider D1 jS and D2 jS. As

�
D2 � b

a
D1

�
D1D ¼ 0 in H 2ðX ;QÞ, we have that�

D2 jS � b
a
D1 jS

�
D1 jS ¼ 0 in H 2ðS;QÞ. By looking at the proof of theorem I in [18],

we have to consider only two cases:
1) ðD2 jSÞ2 ¼ c ¼ ðD1 jSÞ2 ¼ a ¼ 1, then d c 4 and we can use Lemma 3.3;
2) ðD2 jSÞ2 ¼ c ¼ 0 and D2 jSD1 jS ¼ b ¼ 1, hence D2

2D ¼ 0, and D2D
2 ¼

D2ðD1 þD2ÞD ¼ 1, so we can apply Lemmata 3.4 and 3.1 with H ¼ D2. r

Now we prove the main theorem of this section.

Theorem 3.7. Let X be a 3-dimensional variety. Let D be a very ample divisor of X, and
let D ¼ D1 þD2 be an e¤ective decomposition of D. Then D is 3-connected unless:

i) X is a scroll over a smooth curve, D ¼ T is the tautological divisor, D1 1T � F ,
D2 1F (F is the numerical class of a fibre), see Theorem 3.6;

ii) X is a scroll over a smooth curve, D ¼ T is the tautological divisor, D1 1T � 2F is

e¤ective, D2 1 2F (see Remark 3.2);

iii) X is a quadric fibration over a smooth curve, D ¼ TjX , D1 1TjX � FjX , D2 1FjX
where hT ;Fi ¼ NumðWÞ and X is a divisor in W ¼ PðEÞ (see Lemma 3.2);

iv) X is the blowing up at one point of another smooth 3-fold X 0, D ¼ s�D� E,
D1 ¼ s�D� 2E is e¤ective, D2 ¼ E, where s is the blow up, E is the exceptional

divisor and D is a suitable divisor of X 0.

v) ðX ;DÞ is one of the exceptional cases considered below:
– X ¼ P3, D ¼ 2L where PicðP3Þ ¼ hLi, D1 ¼ D2 ¼ L;
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– X ¼ PðTP2Þ;D ¼ T the tautological divisor, D1 ¼ T � p�l, D2 ¼ p�l where

hli ¼ PicðP2Þ;
– X is the blowing up of P3 at one point, D ¼ 2s�L� E, D1 ¼ s�L, D2 ¼

s�L� E, where s is the blowing up, E the exceptional divisor, hLi ¼ PicðP3Þ.

Proof. Put a ¼ DD2
1 , b ¼ DD1D2, c ¼ DD2

2 , d ¼ degðX Þ ¼ D3 ¼ aþ 2bþ c > 0 as
before. By Theorem 3.6 D is 2-connected unless we are in case i), so we can assume
that b ¼ 2 and we have aþ 2 > 0 and 2þ c > 0. Moreover a > 0 or c > 0, otherwise
degðXÞc 4 and then we can use Theorem 3.6 and we are done. In any case we can
assume d d 5.

Let S be a smooth element of jDj. As in the proof of Theorem 3.6, we can assume
that a > 0 and we get two cases by looking at the proof of theorem I of [18]:

1) D2 jS ¼ 2
a
D1 jS in H 2ðS;QÞ.

2)
�
D2 jS � 2

a
D1 jS

�2
< 0.

Case 1): c ¼ 4
a
, hence c > 0 so ða; cÞ ¼ ð1; 4Þ; ð2; 2Þ or ð4; 1Þ. By the symmetric def-

inition of a and c we have to consider only the first two cases.
Case 1a): ða; cÞ ¼ ð1; 4Þ, hence d ¼ 9 andD2 jS 1 2D1 jS, so thatDjS 1 3D1 jS. Look-

ing at the arithmetic genus of D1 jS, we have 2paðD1 jSÞ � 2 ¼ ðKS þD1 jSÞD1 jS ¼
KSD1 jS þ 1. On the other hand, 2gðSÞ � 2 ¼ ðKS þDjSÞDjS ¼ 3KSD1 jS þ 9 ¼
6paðD1 jSÞ. As degðD1 jSÞ ¼ 3 and D1 jS is a (pure) one-dimensional scheme without
embedded components, paðD1 jSÞc 1, so that gðSÞ ¼ gðXÞ is 1 or 4. If gðX Þ ¼ 1, X is
a Del Pezzo 3-fold (we are assuming that X is not a scroll over a curve, otherwise we
are in case i) by Theorem 12.3 of [9]), but there are no such 3-folds with d ¼ 9. Hence
gðX Þ ¼ 4. By looking at the list of linearly normal varieties of degree 9 contained in
[5] we have to check the following:

1a.1) X is the Segre embedding of P1 � Y in P7 where Y is the cubic surface in P3,
i.e. the blowing up s of P2 at 6 points in general position. We can consider X as PðEÞ
where E is the rank 2 vector bundle OY ð1ÞlOY ð1Þ over Y. D is the tautological di-
visor T and PicðXÞ ¼ hT ; p�s�l; p�E1; . . . ; p

�E6i where PicðP2Þ ¼ hli and E1; . . . ;E6

are the exceptional divisors. Recall that L :¼ OY ð1Þ ¼ 3s�l � E1 � 
 
 
 � E6. As usual
the only possible e¤ective decomposition is D ¼ D1 þD2 with D1 ¼ T � p�D and
D2 ¼ p�D for some e¤ective divisor D of Y. By considering the extension: 0 ! L !
E ! L ! 0 we get that D1 can be e¤ective only if L� D ¼ 3s�l � E1 � 
 
 
 � E6 � D
is e¤ective. As c1ðEÞ ¼ 2L we have T 2 ¼ p�ð2LÞT � p�½c2ðEÞ�. Now let us com-
pute 2 ¼ DD1D2 ¼ TðT � p�DÞp�D ¼ 2LD� D2 ¼ ðL� DÞDþ LD. Let us put D ¼
as�l þ b1E1 þ 
 
 
 þ b6E6 for suitable integers bi and a with 3d ad 0, then we have
0 < LD ¼ 3aþ

P
bi and 0c ðL� DÞD ¼ ð3� aÞaþ

P
biðbi þ 1Þ. Hence LD ¼ 1 or

LD ¼ 2. If LD ¼ 1 then D is a line on Y and it is well known (see e.g. [10], p. 402) that
D ¼ Ei or D ¼ s�l � Ei � Ej or D ¼ 2s�l � E1 � 
 
 
 � �EEi � 
 
 
 � E6, but in any case
ðL� DÞD0 1. If LD ¼ 2 and a ¼ 0; 1 then it is easy to see that ðL� DÞD ¼ 0 is not
possible; if a ¼ 2 then

P
b2i ¼ 2 hence b21 ¼ b22 ¼ 1, b2i ¼ 0, id 3, but in this case

L� D cannot be e¤ective; if a ¼ 3 then
P

b2i ¼ 7 with bi c�1 to have L� D e¤ec-
tive, and this is not possible. So we have no suitable decompositions.
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1a.2) X in P7 is a quadric fibration over P1. Unfortunately we do not know whether
there always exist singular fibres, so we cannot use Lemma 3.2. Let S be a generic hy-
perplane section of X; then S is the blowing up at 11 simple points of a rational ruled
surface Fe with 0c ec 4 (see [5]). Let C0 and f be the generators of NumðFeÞ, let
s : S ! Fe be the blowing up and let E1; . . . ;E11 be the exceptional divisors so that
NumðSÞ ¼ hs�C0; s

�f ;E1; . . . ;E11i. By the Lefschetz theorem on hyperplane sec-
tions we have that PicðXÞ injects into PicðSÞ (recall that X is regular). We know that
DjS 1 2s�C0 þ ðeþ 7Þs�f �

P
Ei, (see [5]), if we assume that there exists an e¤ective

decomposition such that D ¼ D1 þD2, DD1D2 ¼ 2, hence we get an e¤ective decom-
position DjS ¼ D1 jS þD2 jS, D1 jSD2 jS ¼ 2. Let us put D1 jS1as�C0 þ bs�f þ

P
ciEi

and D2 jS 1 a 0s�C0 þ b 0s�f þ
P

c 0i Ei with aþ a 0 ¼ 2, bþ b 0 ¼ eþ 7, ci þ c 0i ¼ 1,
ad 0, a 0 d 0, bd ae, b 0 d a 0e, 2 ¼ �aa 0eþ ab 0 þ ba 0 �

P
cic

0
i . If a ¼ a 0 ¼ 1 we have

2 ¼ 7�
P

cic
0
i , as cic

0
i c 0 for any i it is not possible. If a ¼ 2, a 0 ¼ 0 we have

2 ¼ 2b 0 �
P

cic
0
i . As cic

0
i c 0 for any i it must be b 0 ¼ 1, cic

0
i ¼ 0 for any i, D2 jS 1

s�f þ
P

c 0iEi or b 0 ¼ 0 and
P

cic
0
i ¼ �2 D2 jS 1

P
c 0iEi. In the first case, by inter-

secting D2 jS with DjS it is easy to see that D2 jS 1 s�f � Ei for some i or D2 jS 1 s�f .
In the second case D2 jS 1Ei for some i. In both cases cc 0 in contradiction with our
assumptions for Case 1): this variety will be considered in Case 2).

1a.3) X is PðEÞ in P7, D is the tautological divisor T, where E is a rank 2 vector
bundle over P1 � P1, PicðX Þ ¼ hT ; p�H1; p

�H2i where PicðP1 � P1Þ ¼ hH1;H2i
and c1ðEÞ ¼ 3H1 þ 3H2 (see [5]). As usual the only possible e¤ective decompo-
sition is D ¼ D1 þD2 with D1 ¼ T � ap�H1 � bp�H2 and D2 ¼ ap�H1 þ bp�H2,
a, b non-negative integers. Let us compute: 2 ¼ DD1D2 ¼ TðT � ap�H1 � bp�H2Þ 

ðap�H1 þ bp�H2Þ ¼ ð3H1 þ 3H2ÞðaH1 þ bH2Þ � ðaH1 þ bH2Þ2 ¼ 3aþ 3b� 2ab. It
would be 3ðaþ bÞ ¼ 2ðabþ 1Þ, which implies ða; bÞ ¼ ð4; 2Þ or ð2; 4Þ. In both cases an
easy computation shows that D1T

2 ¼ �c2ðEÞ ¼ �9, hence D1 is not e¤ective, so we
have no suitable decompositions.

Case 1b): ða; cÞ ¼ ð2; 2Þ hence d ¼ 8. It is more useful to consider the list of all lin-
early normal degree 8 varieties contained in [13]. We can exclude hypersurfaces and
complete intersections for which we have nothing to prove. We can also exclude va-
rieties which obviously give rise to i) . . . iii). Note that the generic hyperplane section
of P1 �Q3 in P9 (where Q3 is the smooth 3-dimensional hyperquadric) is a quadric
fibration and by Theorem 3.4 of [12] we can use Lemma 3.2 and we get iii). Note also
that the complete intersection of P1 � P3 in P7 and a smooth generic hyperquadric is
a quadric fibration over P1 and, by direct calculation, it is easy to see that X has 8
singular fibres, so we can use Lemma 3.2 and get iii).

We have to check the following other varieties:
1b.1) X is P3, D ¼ 2L where PicðP3Þ ¼ hLi. It is easy to see that the only e¤ective

decomposition is D ¼ Lþ L. Obviously DD1D2 ¼ 2 and we get an exception.
1b.2) X is the double covering of Z, a generic hyperplane section of P1 � P3 em-

bedded in P7, D ¼ f �ðH1 jZ þH2 jZÞ where f is the covering and Z ¼ H1 þH2 is the
hyperplane section of P1 � P3, PicðP1 � P3Þ ¼ hH1;H2i. X is also a quadric fibra-
tion by Theorem 4.2 of [12], its fibres are double coverings, branched over conics, of
the planes which are fibres of the natural projection Z ! P1. Such conics are the
intersections of the fibres of Z with a ð0; 2Þ divisor of P1 � P2 so that there are 6
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singular conics among them. In fact, by looking at the proof of Theorems 4.2 and
4.3 of [12], we know that the fibres of X are linearly equivalent to f �ðH1 jZÞ ¼
KX þ 2D, moreover KX ¼ f �ðKZÞ þ R, where R is the ramification divisor of f , and
KZ ¼ ð�H1 � 3H2ÞjZ by adjunction theory. Hence the branching divisor is f�R ¼
f� f

�ðH2 jZÞ ¼ 2H2 jZ, i.e. the intersection of Z with a ð0; 2Þ divisor of P1 � P2. Now,
by direct calculation, it is easy to see that there are the singular conics.

Any double covering of P2 branched over a singular conic is a singular quadric, so
we can apply Lemma 3.2 and we get iii).

1b.3) X is PðEÞ in P7, D is the tautological divisor T, where E is a rank 2 vector
bundle over P2, for which there exists an exact sequence: 0 ! OP2 ! E ! IY ð4Þ ! 0
and Y is the scheme of 8 distinct points, not belonging to any line or conic (see
Theorem 4.1 of [12]). PicðXÞ ¼ hT ; p�li where l is the generator of PicðP2Þ and
c1ðEÞ ¼ 4l. As usual the only possible decomposition is D ¼ D1 þD2 with D1 ¼
T � hp�l and D2 ¼ hp�l for some positive integer h. By looking at the exact sequence
0 ! OP2ð�hÞ ! Eð�hÞ ! IY ð4� hÞ ! 0 we have that T � hp�l is not e¤ective if
hd 4, or h ¼ 3; 2 as the points are in general position. The only possibility is h ¼ 1
and h0ðP2;Eð�1ÞÞ ¼ 2. Let us compute DD1D2 ¼ TðT � p�lÞp�l ¼ T 2p�l � 1 ¼
p�½c1ðEÞ�Tp�l � 1 ¼ 3.

1b.4) X is PðEÞ in P6, D is the tautological divisor T, where E is a rank 2
vector bundle over P1 � P1 for which there exists an exact sequence: 0 ! OP1�P1 !
E ! IY ð3l1 þ 3l2Þ ! 0 where Y is the scheme of 10 points and PicðP1 � P1Þ ¼
hl1; l2i. PicðX Þ ¼ hT ; p�l1; p

�l2i and c1ðEÞ ¼ 3l1 þ 3l2. As usual the only possible
decomposition is D ¼ D1 þD2 with D1 ¼ T � ap�l1 � bp�l2 and D2 ¼ ap�l1 þ
bp�l2, ad 0, bd 0. By looking at the exact sequences 0 ! OP1�P1ð�al1 � bl2Þ !
Eð�al1 � bl2Þ ! IY ½ð3� aÞl1 þ ð3� bÞl2� ! 0 and 0 ! IY ½ð3� aÞl1 þ ð3� bÞl2� !
OP1�P1 ½ð3� aÞl1 þ ð3� bÞl2� ! OY ½ð3� aÞl1 þ ð3� bÞl2�jY ! 0 we get that D1 is ef-
fective only if ac 3 and bc 3.

Let us compute DD1D2 ¼ TðT � ap�l1 � bp�l2Þðap�l1 þ bp�l2Þ ¼ TðaTp�l1 þ
bTp�l2 � 2abF Þ ¼ ½p�ð3l1 þ 3l2Þ�ðap�l1 þ bp�l2Þ � 2ab ¼ 3ðaþ bÞ � 2ab. It is easy
to see that there are no suitable values of a and b such that DD1D2 ¼ 2.

1b.5) X in P5 is a regular fibration over P1 in complete intersections of type ð2; 2Þ
and the generic hyperplane section S A jDj is a smooth minimal elliptic surface of
Kodaira dimension 1. gðSÞ ¼ 7 and the elliptic fibration over P1 is given by jKSj.
Note that the fibration over P1 is the rational map F associated to jKX þDj (see
also [2]) and KX is not nef because (KX jSÞG ¼ ðKS �DjSÞG < 0 for any G A jKSj. F is
the Mori contraction of the extremal ray ½R�, see [16], where R is a suitable ra-
tional curve contained in a fibre of X. In this case we have an exact sequence 0 !
PicðP1Þ ! PicðXÞ ! Z, hence PicðX Þ ¼ hD;Fi and any e¤ective decomposition
D ¼ D1 þD2 is such thatD1 ¼ D� hF ,D2 ¼ hF for hd 1. Let us computeDD1D2 ¼
DðD� hF ÞhF ¼ hD2ðDþ KX Þ ¼ 4hd 3.

Case 2): c < 4
a
. Since cd�1 we consider:

Case 2a): a > 0, c ¼ �1. D2 is an e¤ective divisor which is a plane in X as
D2D2 ¼ 1, moreover D2 jS is a line in S such that ðD2 jSÞ2 ¼ �1 and by looking at the
exact sequence 0 ! OX ðD2 �DÞ ! OX ðD2Þ ! OSðD2 jSÞ ! 0 we get that h0ðX ;D2Þc
h0ðS;D2 jSÞ ¼ 1, hence h0ðX ;D2Þ ¼ 1.
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Therefore D2 ¼ E is the exceptional divisor of some blow-up, i.e. there exists a
smooth 3-fold X 0 and a point P on X 0 such that X is the blow-up of X 0 at P. Let us
call s this blow-up. PicðXÞ ¼ hs� PicðX 0Þ;Ei, D2 ¼ E;D1 ¼ s�Dþ kE for some divi-
sor D of X 0 and for some integer k. Let us compute: 2 ¼ DD1D2 ¼ ðs�Dþ ðk þ 1ÞEÞ 

ðs�Dþ kEÞE ¼ kðk þ 1Þ, hence k ¼ 1 or k ¼ �2. If k ¼ 1, D ¼ s�Dþ 2E and DjE
would be not very ample which is not possible. If k ¼ �2 we get iv).

Case 2b) a > 0, c ¼ 0. D2 is an e¤ective divisor whose degree is 2. If D2 is an irre-
ducible quadric we can apply Proposition 3.5 to H ¼ D2 by using generic hyperplane
sections and we get case ii) or iii). If D2 is an nonreduced quadric, D2 ¼ 2P and we
can apply Lemma 3.4 to H ¼ P and we get case i). If D2 is the union of two
planes P1 and P2 disjoint or intersecting at one point we can proceed as follows:
let l1 and l2 the respective generators of NumðP1Þ and NumðP2Þ, we have DjP1

¼ l1
DjP2

¼ l2 D1 jP1
¼ ml1 D1 jP2

¼ nl2 with m; n non-negative integers (by the e¤ectiveness
of D1) such that mþ n ¼ 2. Then we can write D ¼ ðD1 þ P1Þ þ P2 and we can
compute DðD1 þ P1ÞP2 ¼ DD1P2 ¼ DjP2

D1 jP2
¼ l2nl2 ¼ n. If nc 1 then D is not

2-connected and we can use Theorem 3.6 to get case i). Hence n ¼ 2 and m ¼ 0, but
in this case we can write D ¼ ðD1 þ P2Þ þ P1 and we can compute: DðD1 þ P2ÞP1 ¼
DD1P1 ¼ DjP1

D1 jP1
¼ l1ml1 ¼ m ¼ 0, thus D is not 2-connected and we can use

Theorem 3.6 in any case.
So we have only one possibility: D2 is the union of P1 and P2 intersecting

along a line. By using the above notation now we have that DðD1 þ P1ÞP2 ¼ nþ 1,
DðD1 þ P2ÞP1 ¼ mþ 1: we can use Theorem 3.6 unless m ¼ n ¼ 1. If m ¼ n ¼ 1 we
have P2

1D ¼ DjP1
P1 jP1

¼ l1ðD�D1 � P2ÞjP1
¼ l1ðl1 � l1 � l1Þ ¼ �1 and P2

2D ¼ �1
in the same way. Therefore a smooth element S A jDj cuts D2 along a singular re-
duced conic h1 þ h2 such that ðhiÞ2 ¼ �1. By Proposition 3.5 we get ii) or iii).

When a > 0, c > 0 and c < 4
a
, we have that 6c d c 8. We have considered all de-

gree 8 varieties in 1b), so we have the following:
Case 2c) d ¼ 6. Let us look at the list of all linearly normal degree 6 varieties

contained in [12]. As before we can exclude hypersurfaces, complete intersections and
varieties which obviously give rise to i) . . . iii). We check the following cases:

2c.1) X is the Segre embedding of P1 � P1 � P1. Note that X is also a qua-
dric fibration, but all its fibres are smooth. Let PicðX Þ be generated by H1, H2, H3

with D ¼ H1 þH2 þH3. It is easy to see that the only possible e¤ective de-
composition is D ¼ D1 þD2 with D1 ¼ H1 þH2, D2 ¼ H3 so that DD1D2 ¼
ðH1 þH2 þH3ÞðH1 þH2ÞH3 ¼ 2. By considering the natural projection onto the
first factor we see that this case is iii) in spite of the fact that we cannot use Lemma
3.2.

2c.2) X is PðTP2Þ and D is the tautological divisor T. Let l be the generator of
PicðP2Þ so that PicðXÞ ¼ hT ; p�li. Let f be the numerical class of a fibre. Now if
D ¼ D1 þD2 as usual, it is easy to see that it must be D1 ¼ T � hp�l and D2 ¼ hp�l
with h > 0. The Euler sequence for P2, twisted by OP2ð�hÞ yields: 0 ! OP2ð�hÞ !
OP2ð1� hÞl3 ! TP2ð�hÞ ! 0, so that the only possibility is h ¼ 1. We compute:
DD1D2 ¼ TðT � p�lÞp�l ¼ T 2p�l � T f ¼ ½p�c1ðTP2Þ�Tp�l � 1 ¼ 3T f � 1 ¼ 2 and
we get one exceptional case.

2c.3) X is the double covering of P1 � P2 branched over a ð2; 2Þ divisor. D is
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f �ðH1 þH2Þ where f : X ! P1 � P2 is the covering and H1, H2 are the generators
of PicðXÞFNumðXÞ. X is a quadric fibration too by Theorem 3.4 and Corollary 3.3
of [12], and its fibres are double coverings of the planes in jH1j, branched over the
conics which are the intersections of the planes with the ð2; 2Þ divisor. Among these
ones there are surely 6 singular conics (see the proof of Theorem 3.4 of [12]) so that
the corresponding quadrics are singular. Now Lemma 3.2 implies iii).

2c.4) X is the Bordiga scroll over P2, i.e. X ¼ PðEÞ where E is a rank 2 vector
bundle defined by the following extension: 0 ! OP2 ! E ! IY ð4Þ ! 0 where Y is
the scheme of 10 distinct points in P2 in general position (see Theorem 4.1 of [12]). D
is the tautological divisor T. Let l be the generator of PicðP2Þ so that PicðXÞ ¼
hT ; p�li. Let f be the numerical class of a fibre. It is easy to see that any possible
e¤ective decomposition D ¼ D1 þD2 implies D1 ¼ T � hp�l, D2 ¼ hp�l with h > 0.
By combining the exact sequences 0 ! OP2ð�hÞ ! Eð�hÞ ! IY ð4� hÞ ! 0 and
0 ! IY ð4� hÞ ! OP2ð4� hÞ ! OY ð4� hÞ ! 0 we get that D1 cannot be e¤ective if
hd 4. As the 10 points do not belong to any line, conic or cubic, h0ðP2;IY ð4� hÞÞ
¼ 0 for h ¼ 1; 2; 3 and we have no suitable decompositions.

Case 2d): d ¼ 7. Let us look at the list of all linearly normal degree 7 varieties
contained in [12]. As before we can exclude hypersurfaces, complete intersections and
varieties which obviously give rise to i) . . . iii). We check the following cases:

2d.1) X is the blowing up of P3 at one point, D ¼ 2s�L� E where s is the blowing
up, E is the exceptional divisor, PicðP3Þ ¼ hLi, PicðXÞ ¼ hs�L;Ei. It is easy to
see that there are only two possible decompositions: D1 ¼ 2s�L� 2E, D2 ¼ E and
D1 ¼ s�L� E, D2 ¼ s�L. In both cases DD1D2 ¼ 2. The first one belongs to iv), the
second one is an exceptional case.

2d.2) X is the blowing up of P3 along a smooth curve C which is a complete in-
tersection of type ð2; 2Þ or, equivalently, X is a divisor of type ð1; 2Þ on P1 � P3 (see
Theorem 3.4 of [12]). Hence X is a quadric fibration over P1 with singular fibres and
by Lemma 3.2 we get iii).

2d.3) X is PðEÞ in P6, D is the tautological divisor T, where E is a rank 2 vector
bundle over P2 for which there exists an exact sequence 0 ! OP2 ! E ! IY ð4Þ ! 0
and Y is the scheme of 9 distinct points not belonging to any line or conic. We can
proceed as in Case 1b.3) and 2c.4).

2d.4) X is PðEÞ in P5, D is the tautological divisor T, where E is a rank 2 vector
bundle over Z, the cubic surface in P3, for which there exists an exact sequence:
0 ! OZ ! E ! IY ð2Þ ! 0 and Y is a scheme of 5 points. Z is the blowing up of P2

at 6 distinct points in general position. Let s be the blowing up, l the generator of
PicðP2Þ and Ei the exceptional divisors, then PicðZÞ ¼ hs�l;E1; . . . ;E6i, PicðXÞ ¼
hT ; p�s�l; p�Eii. Let H ¼ 3s�l � E1 � 
 
 
 � E6 be the hyperplane section of Z,
c1ðEÞ ¼ 2H. As usual the only possible decomposition is T ¼ D1 þD2 with D1 ¼
T � p�D and D2 ¼ p�D for some e¤ective divisor D of Z such that D ¼ as�l �
b1E1 � 
 
 
 � b6E6, a; bi A Z. Let us compute DD1D2 ¼ TðT � p�DÞðp�DÞ ¼ 2HD �
D2 ¼ að6� aÞ þ

P
biðbi � 2Þ ¼ 2. Note that 2H � D ¼ ð6� aÞs�l þ

P
ðbi � 2ÞEi

has to be e¤ective, by looking at 0 ! OZð�DÞ ! Eð�DÞ ! IY ð2H � DÞ ! 0, and at
0 ! IY ð2H � DÞ ! OZð2H � DÞ ! OYð2H � DÞ ! 0, because we are assuming that
h0ðX ;D1Þ ¼ h0ðX ;T � p�DÞ ¼ h0ðZ;Eð�DÞÞ0 0. Hence 0c ac 6. If a ¼ 6 we have
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bi d 2 for any i as 2H � D is e¤ective, so that it is not possible DD1D2 ¼ 2. If a ¼ 5
or a ¼ 1 to get DD1D2 ¼ 2 we must have b1 ¼ b2 ¼ b3 ¼ 1 and b4 ¼ b5 ¼ b6 ¼ 0 or
2, but in these cases 2H � D or D would not be e¤ective. If a ¼ 4 or a ¼ 2 to get
DD1D2 ¼ 2 we must have bi ¼ 1 for any i, but also in this case 2H � D or D would
not be e¤ective. If a ¼ 3 it is not possible that DD1D2 ¼ 2. If a ¼ 0 we have bi c 0
for any i as D is e¤ective, so that it is not possible that DD1D2 ¼ 2. So in fact there
are no suitable e¤ective decompositions for T.

2d.5) X is the blowing up at a point P of Y, a smooth complete intersection of type
ð2; 2; 2Þ in P6. D ¼ s�H � E where s is the blow-up, E is the exceptional divisor, H is
the class of a hyperplane section of Y, PicðY Þ ¼ hHi, PicðXÞ ¼ hs�H;Ei. By im-
posing DD1D2 ¼ 2 it is easy to see that the only possible e¤ective decomposition is
D1 ¼ s�H � 2E, D2 ¼ E. D1 is e¤ective by the existence of tangent hyperplanes at P
to Y and we get case iv).

2d.6) X in P5 is a regular fibration over P1 in a cubic surface and the generic hy-
perplane section S A jDj is a smooth minimal elliptic surface of Kodaira dimension 1.
gðSÞ ¼ 6 and the elliptic fibration over P1 is given by jKSj. As in Case 1b.5) the
fibration over P1 is the rational map F associated to jKX þDj (see also [2]) and
KX is not nef because ðKX jSÞG ¼ ðKS �DjSÞG < 0 for any G A jKSj. F is the Mori
contraction of the extremal ray ½R�, see [16], where R is a suitable rational curve on
some fibre of X. In this case we have an exact sequence 0 ! PicðP1Þ ! PicðX Þ ! Z,
hence PicðX Þ ¼ hD;Fi and any e¤ective decomposition D ¼ D1 þD2 is such
that D1 ¼ D� hF , D2 ¼ hF for hd 1. Let us compute DD1D2 ¼ DðD� hF ÞhF ¼
hD2ðDþ KX Þ ¼ 3hd 3. r

Remark 3.4. One can conjecture that, in general, if X is a smooth n-dimensional va-
riety and D is a very ample divisor on X, then D is n-connected but for a finite list of
exceptions. The natural next step in such an investigation is n ¼ 4. In this case, as
suggested by the referee, it should be not too di‰cult to prove the conjecture, at least
in high degree, using theorem C of [1].
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