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Another case of the prime power conjecture
for finite projective planes
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Abstract. Let G be an abelian collineation group of order nðn� 1Þ of a projective plane of order
n. We show that n must be power of a prime p and that the p-part of G is elementary abelian.

1 Introduction

The purpose of this note is a surprisingly elementary proof of the following result.

Theorem 1. Let G be an abelian collineation group of order nðn� 1Þ of a projective
plane of order n. Then n must be a power of a prime p and the p-part of G is elementary
abelian.

Theorem 1 adds to the extremely scarce conclusive results known in the context of
the prime power conjecture for projective planes. Let us review some background.

In what follows, P will denote a finite projective plane of order n, and G will be a
large (to be specific, jGj > ðn2 þ nþ 1Þ=2) abelian (and hence quasi-regular) collinea-
tion group of P. Such planes have been classified into eight cases by Dembowski and
Piper [5], which are usually referred to as types (a) through (h); see also [10, p. 114]
for a statement of their result. As a special instance of the prime power conjecture for
projective planes in general, it is widely conjectured that planes of any one of those
eight types can only exist for prime powers n. This conjecture has been established for
abelian groups of order n2 (types (b) and (c)) in a recent paper by Blokhuis, Jung-
nickel and Schmidt [2] and for arbitrary groups of type (h) by Ganley and McFarland
[7]; the latter case is sporadic and only occurs for n ¼ 4.

Our Theorem 1 takes care of one further case, namely that of abelian groups of
type (f ). Here G has order nðn� 1Þ, fixes a double flag ðyA;yB;LyÞ of P together
with a further line LA through yA and acts regularly on the nðn� 1Þ points not in-
cident with either of the two special lines Ly and LA and on the nðn� 1Þ lines not
incident with either of the two special points. In this case, P is both ðyA;LyÞ- and
ðyB;LAÞ-transitive and therefore at least in Lenz–Barlotti class II.2; conversely, any
plane admitting two such transitivities is of type (f ); cf. Dembowski [4] and Hughes



and Piper [8] for background. We note that the only known examples are provided by
the Desarguesian planes PGð2; qÞ. Indeed, it seems quite reasonable to conjecture that
a plane with an abelian group of type (f ) must be Desarguesian.

Prior to the present note, the following restrictions on planes with an abelian group
of type (f ) were known, due to Ganley [6] for even orders and Pott [9] for odd orders,
respectively; see also [3] for simpler proofs for the first two parts of the following result.

Result 2. Let P be a projective plane of order n admitting an abelian collineation group

G of type ð f Þ.

1. If n is even, then n is a power of 2 and the Sylow 2-subgroup of G is elementary

abelian.

2. If n is odd, then the Sylow 2-subgroup of G is cyclic.

3. If n is odd and not a perfect square, then n is a prime power.

4. If n ¼ p is a prime, then P is the Desarguesian plane PGð2; pÞ.

We note that our proof of Theorem 1 does not require that p is an odd prime, so
that we also recover Result 2.1. For the proof, it will be convenient to write G mul-
tiplicatively (with unit 1) and to use the integral group ring ZG. Let us briefly recall
the necessary notation. For X ¼

P
xgg A ZG and t A Z we write jX j ¼

P
xg and

X ðtÞ ¼
P
xgg

t. For r A Z we write r for the group ring element r � 1, and for SJG

we write S instead of
P

g AS g. Group rings are a standard tool in the theory of dif-
ference sets; for background, see [1]. They will be useful in our context, as planes with
a group of type (f ) are equivalent to a certain kind of di¤erence set.

2 The proof

Planes of type (f ) may be represented using the direct product di¤erence sets (DPDS)
introduced by Ganley [6]. In group ring notation, a DPDS of order n may be defined
to be a subset D of a group G of order nðn� 1Þ with two subgroups A and B of orders
n and n� 1, respectively, which satisfies the equation

DDð�1Þ ¼ nþ G � A� B ð1Þ

in ZG; thus every element not in the union of the two forbidden subgroups A and B
has a unique ‘‘di¤erence representation’’ from D. For our purposes, G is assumed to
be abelian, and hence G ¼ A� B; see Pott [9] for examples in semidirect products
and [3] for an explicit description of the plane determined by an abelian DPDS (which
simplifies the one given by Ganley [6]). In what follows, we will write G multiplica-
tively and work in the group ring ZG.

We require the following simple lemma which was observed by Ganley [6].

Lemma 3. Let D be a DPDS for a plane of order n in an abelian group G ¼ A� B.
Then D meets every coset of A and all but one coset of B exactly once.
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In particular, we may assume DVB ¼ q in what follows. Thus D may be written
in the form

D ¼
X

b AB

bf ðbÞ; ð2Þ

where f : B! Anf1g is a bijection.
The proof of Theorem 1 will proceed via computing the group ring element

Dð�1ÞDðpÞ modulo p, where p is any prime dividing n. This agrees with a major step
in the proof for the case of groups of type (b) given in [2], though the remainder of the
argument will require a totally di¤erent approach. Let us first note the following result,
which follows from Lemma 3 by induction; the rather easy details may be left to the
reader.

Lemma 4. Let D be a DPDS for a plane of order n in an abelian group G ¼ A� B, and
let p be a prime dividing n and m any positive integer. Then the following equations
hold in the group algebra ZpG over the field Zp of residues modulo p:

GDm ¼ ð�1ÞmG; ð3Þ

ADm ¼ GDm�1 ¼ ð�1Þm�1
G; ð4Þ

BDm ¼ ðG � BÞDm�1 ¼ ð�1Þm�1
mG þ ð�1ÞmB: ð5Þ

Proof of Theorem 1. As already mentioned, we first evaluate the group ring element
Dð�1ÞDð pÞ modulo p. Using (2), Lemma 4 and the fact X p ¼ X ð pÞ (see [1, Lemma
VI.3.7]), we compute in ZpG:

Dð�1ÞDðpÞ ¼ Dð�1ÞDp

¼ ðDð�1ÞDÞDp�1

¼ ðG � A� BÞDp�1

¼ G þ G � ½�ðp� 1ÞG þ B�

and therefore

Dð�1ÞDðpÞ ¼ G � B ðin ZpGÞ: ð6Þ

But jDð�1ÞDð pÞj ¼ jG � Bj ¼ ðn� 1Þ2, and so (6) must hold as an identity in ZG. Using
(2), we may write this identity as

X

b; c AB

b�1f ðbÞ�1
cpf ðcÞp ¼ G � B: ð7Þ

Now, if some element f ðcÞp equals one of the elements f ðbÞ, we get the element
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b�1cp A B from the sum in (7), which is forbidden. Hence we conclude f ðcÞp ¼ 1 for
all c A B, since f : B! Anf1g is a bijection. This means ap ¼ 1 for all elements a0 1
of A. Thus A is an elementary abelian p-group and n is a power of p, as claimed. r
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