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Abstract. In this paper we make some comments and improvements on a theorem of Benia-
mino Segre, concerning the locus of points from which an algebraic variety is not projected
generically one-to-one.

1 Introduction

A well-known and useful technique in algebraic geometry is the linear projection of
a given projective variety X HPr, which we will usually assume to be irreducible,
reduced and non-degenerate, i.e. not contained in any proper subspace of Pr. It is
clear that the projection p from a general point of the ambient space of a variety X,
which is not a hypersurface, is such that pjX is generically one-to-one, i.e. it is bira-
tional to its image. For example, if n :� dim X < rÿ 1, by applying rÿ nÿ 1 such
projections, one may consider X as birationally equivalent to a hypersurface in Pn�1.

However, it may be interesting to know also what is the locus S�X � of points from
which X is projected multiply, i.e. the locus of points from which the projection of X

is not generically one-to-one. Since Beniamino Segre already studied in [4] the prop-
erties of S�X�, we will call it the Segre locus of X. More precisely, we say that the
projection pz : Pr ! Prÿ1 from a point z B X onto a hyperplane Prÿ1 not passing
through z is a special projection of X if pzjX is not generically one-to-one. We de®ne
the Segre locus of an irreducible, reduced, algebraic variety X HPr as:

S�X� :� fz A Pr ÿ X : pz is a special projection of Xg:
where Y is the Zariski closure of the subset Y in Pr. For example, if X HPn�1 is a
hypersurface (of degree > 1), then S�X� � Pn�1. In [4] Segre proved the following:

Theorem 1. Let X HP r be an irreducible, non-degenerate, algebraic variety of dimen-

sion n < rÿ 1. Then the Segre locus S�X � is the union of ®nitely many linear subspaces
of P r and all of its irreducible components have dimension strictly less than n. Fur-

thermore, a linear k-space PHPr, with 0 < k < n, is contained in S�X � if and only if

either one of the following equivalent properties holds:



(i) X lies on an �n� 1�-dimensional cone with vertex at P;

(ii) the tangent space to X at a general point cuts P in a subspace of dimension k ÿ 1.

Finally P is an irreducible component of S�X� if and only if P enjoys either (i) or (ii)
and it is maximal under this condition. This in turn happens if and only if the maximal

vertex of the cone in (i) coincides with P.

Recall that a variety X HPr is a cone if there is a point z A X such that for
every other point x A X the line joining x and z lies in X. In this case z is called a 0-
dimensional vertex of X. The set of 0-dimensional vertices of X is a subspace of
P r called the maximal vertex of X. Any subspace of the maximal vertex is called a
vertex of X.

Theorem 1 implies the following corollary, which has somewhat unexpected appli-
cations to problems in numerical algebraic geometry, as shown by Sommese, Ver-
schelde and Wampler in [7]. Let c � rÿ nÿ 1 and let x � �x1; . . . ; xc� be a point of
X c. Let us denote by Cone�X ; x� the cone over X with vertex at the linear subspace
of P r spanned by x1; . . . ; xc.

Corollary 2. Let X be as in Theorem 1. Then:

7
x AX cnD

Cone�X ; x� � X US�X �

where D is the set of x � �x1; . . . ; xc� A X c such that the linear space spanned by

x1; . . . ; xc has dimension strictly less than cÿ 1 (if c � 1 then D �q).

Note that D in the above statement is a proper subset of X c by the General Posi-
tion Theorem (see [1], pg. 109).

Section 2 will be devoted to explain some general properties of the Segre locus, to
revise Segre's proof of Theorem 1 and to prove Corollary 2.

Following Segre, we de®ne a zero- (resp. positive) dimensional component of
S�X� to be a centre (resp. an axis) of X. In [5] Segre shows that for every l; n; r
such that 0 < l < nW rÿ 2 and for every m > 0, there exists an irreducible algebraic
variety X HP r of dimension n such that X has an axis of dimension l and moreover
m centers. He also studies the possible con®gurations of the axes of a surface. By
extending some of these results, in section 3 we will show the following improvement
of Theorem 1:

Theorem 3. Let X HPr be an irreducible, non-degenerate, algebraic variety of dimen-

sion n < rÿ 1 which is not a cone. Then the Segre locus S�X � is the disjoint union of

®nitely many linear subspaces of Pr. If P1 and P2 are two distinct axes of X, then
dim�P1� � dim�P2�W n� 1. Moreover

(i) If dim�P1� � dim�P2�X n, then P1 and P2 are the only axes of X, n � rÿ 2 and

X is the complete intersection of two cones of dimension n� 1 with vertices at P1

and P2.
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(ii) If dim�P1� � dim�P2� � n� 1 then S�X� � P1 UP2.

In the last section 4 we discuss some open problems.

2 Properties of the Segre locus

In this paper, X HPr will always be an irreducible, reduced, algebraic variety of
dimension n, where Pr � Pr�C� is the projective r-dimensional space over the com-
plex numbers. If x is a smooth point of X, we will denote by TX ;x the projective
tangent space to X at x. If Z is any subset of P r, we denote, as usual, by Span�Z� the
smallest linear subspace of Pr containing Z.

If Y is a variety in P r and P is a subspace of Pr of dimension l, we denote by
Cone�Y ;P� the cone over Y with vertex at P, that is the Zariski closure of the union
of all the P l�1's joining P with a point in Y ÿPVY .

Let X be a cone. If P is a vertex of dimension l of X and Y is the intersection of X
with a Pm independent of P, for r > mX rÿ l ÿ 1, then X � Cone�Y ;P�. If m �
rÿ l ÿ 1, then P is the maximal vertex of X if and only if Y is not a cone.

We can now list some basic properties of the Segre locus:

Lemma 4. Let X be an irreducible, reduced, projective variety of dimension n in Pr.
Then:

(i) for every x A X , S�X �JCone�X ; x�J Span�X�;
(ii) dim S�X �W n� 1;

(iii) if X � Span�X �, i.e. if X is a linear subspace of Pr, then S�X� �q;

(iv) dim�S�X�� � n� 1 if and only if dim�Span�X �� � n� 1, i.e. if and only if

S�X � � Span�X�;
(v) if P is a subspace of Pr such that Span�X �VP �q, then S�Cone�X ;P�� �

Cone�S�X �;P�;
(vi) if P is a hyperplane of Pr such that X VP is irreducible and reduced, then

S�X �VPJS�X VP�;
(vii) if z A P r ÿ �X US�X ��, set p � pz, and suppose that for an irreducible compo-

nent Z of S�X�, p�Z� is not contained in p�X�. Then p�Z�JS�p�X ��. In par-
ticular, if z A Pr is a general point, then p�S�X��JS�p�X��.

Proof. (i) and (ii): By de®nition of the Segre locus, if z A S�X �, the line L joining
z with a general point x A X intersects X also at another point y, hence z A LJ
Cone�X ; x�J Span�X�. Moreover dim�Cone�X ; x��W n� 1.

(iii): For every z A Pr ÿ X , any line through z intersects X in almost one point,
thus pz is not a special projection of X.

(iv): By (i) and (iii) we may assume that Span�X� � Pr and r > n. If dim�S�X�� �
n� 1, then S�X� � Cone�X ; x� for every x A X by (i). Hence the maximal vertex of
the cone S�X� coincides with Span�X �, thus S�X� � Pr. If r � n� 1, then a general
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line through any point z B X intersects X in d points, where d � deg�X� > 1, thus
z A S�X�, hence S�X � � Pr. Finally, if S�X� � Span�X �, then dim�Span�X�� �
dim�S�X�� � n� 1 by (ii) and (iii).

(v): We may assume that Span�X� and P span the whole of Pr.
Let z A S�X � and let w be a general point on the line joining z and a point v A P.

Since pz is a special projection of X, the line L joining z with a general point x A X

intersects X at another point y A X . Notice that L lies in Span�X �, hence LVP �q.
Thus the lines joining v with x and y are distinct. Therefore the line joining w with a
point of a general line vx of Cone�X ;P� intersects this cone at another point lying on
the line vy. This means that w A S�Cone�X ;P��.

Conversely, let z A S�Cone�X ;P�� ÿ Cone�X ;P�. The line L joining z with a
general point x A Cone�X ;P� intersects X at another point y A Cone�X ;P�. Notice
that LVP �q otherwise L would be contained in Cone�X ;P�, whereas z B
Cone�X ;P�. Let p be the projection of Pr from P to Span�X�. Then the line p�L�
contains z 0 � p�z� B X and p�x�, which is a general point of X, and it also contains
p�y� A X ; that implies that z 0 A S�X �.

(vi): Let z A PVS�X� ÿPVX . By the assumption that X VP is reduced, the line
joining z with a general point x A X VP intersects X, hence X VP, at another point
y, therefore x A S�X VP�.

(vii): Let w A Z be a general point. We may assume that p�w� � w by choosing the
hyperplane which p projects onto. Notice that p�w� � w B p�X� by our assumption.
Let x A X be a general point and set y � p�x�. Then the line joining w with x inter-
sects X at another point x 0 (not lying on the line zx), hence the line joining w with y

intersects p�X� also in y 0 � p�x 0�0 y. The ®nal assertion easily follows.

Notice that, in view of Lemma 4, we may and will assume, without loss of gener-
ality, that X is non-degenerate. We may also ignore, from now on, the trivial cases in
which X is either a projective space or a hypersurface or a cone.

For the proof of Segre's theorem 1 we need to recall the following result from [2],
Proposition 4.1:

Proposition 5. Let X be an irreducible, reduced, projective variety of dimension n in Pr

and let P be a subspace of Pr of dimension l. The tangent space TX ;x to X at a general

point x A X intersects P in a subspace of dimension h if and only if the projection Y of

X from P to a P rÿlÿ1 has dimension nÿ hÿ 1. This in turn happens if and only if X sits

on an �n� l ÿ h�-dimensional cone with vertex at P, namely on the Cone�Y ;P�. In

particular:

(i) in case h � l: X is a cone with vertex at P if and only if the tangent space TX ;x to

X at a general point x A X contains P;

(ii) in case h � n: X is contained in P if and only if the tangent space TX ;x to X at a

general point x A X is contained in P;

(iii) in case h � nÿ 1: X is contained in a P l�1 containing P if and only if the tangent
space TX ;x to X at a general point x A X intersects P in a subspace of dimension

nÿ 1.

Alberto Calabri and Ciro Ciliberto100



Now we are ready for the:

Proof of Theorem 1. Notice that properties (i) and (ii) in the statement of Theorem 1
are equivalent by Proposition 5.

Let Z be an irreducible component of S�X �. Fix a general point x A X . For a gen-
eral point z A Z, the line Lz joining z with x intersects X at another point y. Notice
that both TX ;x and TX ;y lie in a subspace of dimension n� 1 which is tangent to
Cone�X ; z� along the line Lz. Let Y be an irreducible component of the Zariski
closure of the locus of such y's as z varies in Z. Then h :� dim Y W n and TY ;y J
TX ;y, hence TY ;y intersects TX ;x in a subspace of dimension hÿ 1, therefore Y is
contained in a subspace Px of dimension n� 1 containing TX ;x by Proposition 5,
(iii). Now Px contains both x and y hence it contains the line Lz, thus Px contains
the general point z A Z, i.e. Z JPx. Notice that Px depends on x, otherwise X would
be contained in Px � Pn�1, against the assumptions. Therefore P �7

x AX
Px is a

linear subspace of dimension l W n which contains Z. For every x A X , the tangent
space TX ;x intersects P in a subspace of dimension l ÿ 1, because both TX ;x and P lie
in Px. The case l � n is ruled out by Proposition 5 and the assumptions. Hence l < n

and X is contained in a cone with vertex at P by Proposition 5, (i). Finally pz is a
special projection of X for every z A P, thus Z � P.

At this point the statement clearly follows.

We ®nish this section with the

Proof of Corollary 2. Let S �7
x AX cnD Cone�X ; x�. Clearly X JS. Lemma 4, (i)

implies that S�X�J7
x AX

Cone�X ; x�JS. It remains to prove that SJX US�X�.
Assume ®rst that c � 1. If z A Sÿ X , then the line L joining z to a general point
x A X sits in Cone�X ; x�. Therefore L intersects X at some other point y A X and this
means that pzjX is not birational, i.e. z A S�X �.

Assume now that c > 1 and suppose that there is a point z A Sÿ �X US�X��.
Then the projection of X from z to a Prÿ1 would be an n-dimensional variety Y which
would enjoy the following property: every Pcÿ1, which cuts Y at c independent
points, contains a further point of Y. This property contradicts the General Position
Theorem (see [1], pg. 109).

3 On the axes of a variety

This section is devoted to the proof of Theorem 3. This will be done in a few di¨erent
steps. The ®rst one is the following:

Proposition 6. Let X HPr be an irreducible, non-degenerate, algebraic variety of di-

mension n < rÿ 1 which is not a cone. Suppose that X has two distinct axes P1 and

P2. Then P1 VP2 �q.

Proof. Let T :� TX ;x be the tangent space to X at its general point x. We will use the
following notation: for h � 1; 2, we set lh � dim�Ph�, Th � T VPh, th � dim�Th�,
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i � dim�P1 VP2�, j � dim�T1 VT2�, P � Span�P1 UP2�, l � dim�P� � l1 � l2 ÿ i,
Y � Span�T1 UT2�, y � dim�Y�. Theorem 1 implies that th � lh ÿ 1, for h � 1; 2.

We argue by contradiction and we assume iX 0. Since X is not a cone, Proposition
5, (i) forces j < i, hence:

rÿ 2X nX y � t1 � t2 ÿ j

X �l1 ÿ 1� � �l2 ÿ 1� ÿ �i ÿ 1� � l1 � l2 ÿ i ÿ 1 � l ÿ 1

thus P is a proper subspace of P r. If y � l, then Y � P hence PJT , but this is not
possible because X should be a cone by Proposition 5, (i). It follows that y � l ÿ 1,
i.e. j � i ÿ 1.

If l < n, then P would enjoy property (ii) of the statement of Theorem 1, contra-
dicting the fact that P1 and P2 are irreducible components of S�X�. The case l � n

is also excluded by Proposition 5, (iii), since l � nW rÿ 2. Therefore we may assume
l X n� 1. On the other hand l ÿ 1 � yW n, hence l � n� 1 and Y � T . Since YJ
P, we ®nd a contradiction by Proposition 5, (ii).

The next step is as follows:

Proposition 7. Let X HPr be an irreducible, non-degenerate, algebraic variety of di-

mension n < rÿ 1 which is not a cone. Suppose that X has two distinct axes P1 and
P2. Then dim�P1� � dim�P2�W n� 1. Moreover if dim�P1� � dim�P2�X n then n �
rÿ 2 and X is the complete intersection of two cones of dimension n� 1 with vertices

respectively at P1 and P2.

Proof. We keep the above notation. Since P1 and P2 are disjoint, the same is true for
T1 and T2. Thus nX y � t1 � t2 � 1 � l1 � l2 ÿ 1.

If l1 � l2 � n� 1, then T � YJP. Proposition 5, (ii) implies that P � Pr, thus
r � l � l1 � l2 � 1 � n� 2, namely X has codimension 2 and X is contained in
Cone�X ;P1�VCone�X ;P2�. Actually X is equal to the complete intersection of
the two cones. Indeed, for i � 1; 2, any P li�1 generator of Cone�X ;Pi� cuts
Cone�X ;P3ÿi� along a variety Y and Cone�X ;P3ÿi� � Cone�Y ;P3ÿi�. This implies
that Y is irreducible and reduced. One moment of re¯ection shows then that the
complete intersection of Cone�X ;P1� and Cone�X ;P2� itself is irreducible and re-
duced, i.e. it coincides with X.

If l1 � l2 � n, then y � nÿ 1. Proposition 5, (iii) forces n� 1 � l1 � l2 � 1 �
l X rÿ 1, hence again r � n� 2 and, as above, X is the complete intersection of
Cone�X ;P1� and Cone�X ;P2�.

The ®nal step consists in proving the following result, which, together with Prop-
ositions 6 and 7, implies Theorem 3:

Proposition 8. Let X HPr be an irreducible, non-degenerate, algebraic variety of di-
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mension n � rÿ 2 which is not a cone. Suppose that P1 and P2 are two distinct irre-

ducible components of S�X �. Then S�X�V Span�P1 UP2� � P1 UP2.

Proof. Again we keep the above notation. We ®rst treat the case l1 � l2 W n.
Let �x0; . . . ; xr� be projective coordinates in Pr. We ®x the hyperplane at in®nity

Py to be the one with equation x0 � 0 and we consider �x1; . . . ; xr� as a½ne coor-
dinates on Ar � Pr ÿPy. We denote by Pi the point at in®nity of the xi-axis, i.e. the
point �0; . . . ; 1; . . . ; 0� where 1 is at the �i � 1�-th place. We may assume P1 to be
generated by the points P1; . . . ;Pl1�1 and P2 by the points Prÿl2 ; . . . ;Pr, thus P1 U
P2 HPy. Hence local a½ne equations of X in a suitable open subset U of Ar may be
written in the form:

x1 � f �x2; . . . ; xrÿl2ÿ1�; xr � g�xl1�2; . . . ; xrÿ1�

where f and g are analytic functions of their variables.
Suppose that the assertion is false. Then we may assume that S�X �VPy contains

the point C � �0; 1; . . . ; 1; 0; . . . ; 0; 1; . . . ; 1�, where the 0's appear at places 1 and l1�
2; . . . ; rÿ l2 ÿ 1. Let

P � � f �u2; . . . ; urÿl2ÿ1�; u2; . . . ; urÿ1; g�ul1�2; . . . ; urÿ1��

be a general point of X. Then there is a point

P 0 � � f �u 02; . . . ; u 0rÿl2ÿ1�; u 02; . . . ; u 0rÿ1; g�u 0l1�2; . . . ; u 0rÿ1��

on X such that the line joining P and P 0 has C as its point at in®nity, i.e.:

f �u2; . . . ; urÿl2ÿ1� ÿ f �u 02; . . . ; u 0rÿl2ÿ1� � u2 ÿ u 02 � � � � � ul1�1 ÿ u 0l1�1

� urÿl2 ÿ u 0rÿl2
� � � � � urÿ1 ÿ u 0rÿ1 � g�ul1�2; . . . ; urÿ1� ÿ g�u 0l1�2; . . . ; u 0rÿ1�

���

and ui � u 0i for i � l1 � 2; . . . ; rÿ l2 ÿ 1. Notice that P 0 depends on P.
By shrinking the open subset U of Ar in which we are working, we may assume

that u 02; . . . ; u 0l1�1; u
0
rÿl2

; . . . ; u 0rÿ1 are analytic functions of u2; . . . ; urÿ1. We claim that

u 02; . . . ; u 0l1�1 do not depend on urÿl2 ; . . . ; urÿ1. We argue by contradiction and we

assume this is not the case. By (*) we have:

f �u2; . . . ; urÿl2ÿ1� ÿ ui � f �u 02; . . . ; u 0rÿl2ÿ1� ÿ u 0i

for every i � 2; . . . ; l1 � 1. Hence we deduce that:

q

quj
� f �u 02; . . . ; u 0rÿl2ÿ1� ÿ u 0i � � 0

for every j � rÿ l2; . . . ; rÿ 1. This reads:
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Xl1�1

h�2

qf

qxh

qu 0h
quj
ÿ qu 0i

quj
� 0

which holds for every i � 2; . . . ; l1 � 1 and every j � rÿ l2; . . . ; rÿ 1. By linear alge-
bra, this yields:

Xl1�1

h�2

qf

qxh
� 1:

Notice that the tangent space T to X at P has a½ne equations:

Xrÿl2ÿ1

h�2

qf

qxh
�xÿ uh� � x1 ÿ u1;

Xrÿ1

k�l1�2

qg

qxk
�xÿ uk� � xr ÿ ur

and the projective hyperplane de®ned by the former equation contains P2 and C.
This implies that the tangent space to X at P intersects the span M of P2 and C in a
subspace of dimension l2. Thus M is contained in an axis and we get a contradic-
tion, because M strictly contains P2. This proves our claim that u 02; . . . ; u 0l1�1 do not
depend on urÿl2 ; . . . ; urÿ1. Similarly one shows that u 0rÿl2

; . . . ; u 0rÿ1 do not depend on
u2; . . . ; ul1�1.

Suppose that l1 � 0. Since l2 W nÿ 1 one has rÿ l2 > l1 � 2 � 2, and recall that in
this case ui � u 0i for i � 2; . . . ; rÿ l2 ÿ 1. Hence f �u2; . . . ; urÿl2ÿ1� � f �u 02; . . . ; u 0rÿl2ÿ1�
and therefore all the di¨erences in (*) are 0, i.e. P � P 0, a contradiction. Similarly if
l2 � 0. Thus we may assume l1 X l2 > 0. In this case, as a consequence of the above
analysis, we have that the di¨erences in (*) are equal to a constant c, so the transla-
tion by c in the direction of the point at in®nity C ®xes X. Since X is algebraic, this
yields that X is a cone with vertex at C, a contradiction. This ends the proof in the
case l1 � l2 W n.

Suppose now that l1 � l2 � n� 1, thus in particular l1; l2 > 1. We may assume that
P2 is generated by Prÿl2 ; . . . ;Pr, so P2 HPy. We may assume also that the subspace
Py VP1 is generated by P1; . . . ;Pl1 . Notice that l1 � 1 � rÿ l2. Then we argue by
contradiction supposing that the point C � �0; 1; . . . ; 1� sits in S�X �. By the same
computations as before (by replacing only l1 with l1 ÿ 1 in all the above formulae), it
follows that X is a cone, a contradiction.

Remark 9. (i) We stress that the existence of varieties of dimension n � rÿ 2, with
irreducible components P1 and P2 of S�X� of dimension respectively l1 and l2, are
possible for all values of l1 and l2 such that l1 � l2 W n� 1. It is su½cient to take for
X a complete intersection of cones of dimension n� 1 with maximal vertices at two
skew subspaces P1, P2 of the prescribed dimensions.

(ii) We want to point out the following interesting phenomenon. Let X HPr be an
irreducible, non-degenerate, algebraic variety of dimension n < rÿ 1 which is not a
cone and let P1, P2 be two distinct, and therefore disjoint, axes of X. Consider the
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projection p from a point of P � Span�P1 UP2� not on X UP1 UP2, and set Y �
p�X �, which is a variety Y birational to X. Using Lemma 4, (vii), one sees that, in
general, p�P�JS�Y �.

4 Some open problems

In the present section we want to propose some open problems. First of all, the con-
®guration and the number of the irreducible components of the Segre locus of a variety
X HPr of dimension nW rÿ 2 is still pretty much a mystery. In the case n � rÿ 2
some not exhaustive information is provided by Proposition 8. Is it possible to extend
this result to the case n < rÿ 2?

In general any information more detailed than the one we have given here would
be welcome. In particular, Segre's theorem from [5], mentioned in the introduction,
about the existence of varieties with as many centers as one wants, should be com-
plemented with answers to questions like:

(i) are there bounds on the number of centers, or axes, depending on any invariant
of the variety, like the (co)dimension, the degree, etc.?

(ii) is the con®guration and the number of components of the Segre locus in¯uenced
by the smoothness of the variety?

A generalization of the Segre locus, that we call the Grassmann±Segre locus, can be
de®ned as follows. Let X HPr be an irreducible, projective variety of dimension n
and let m be a non-negative integer such that mW rÿ nÿ 2. If P is a general linear
subspace of Pr of dimension m, then the projection p :� pP of Pr to Prÿmÿ1 from P
restricts to X to a birational morphism of X onto its image. If P is still such that pjX
is a morphism, i.e. PVX �q, but pjX is no longer birational to its image, then we
say that p is a special projection of X. We de®ne the m-th Grassmann±Segre locus of X

as:

Sm�X � :� fP A G�m; r� : pP is a special projection of Xg:

Of course S0�X� � S�X�. It would be nice to have extensions of Theorems 1
and 3 to these Grassmann±Segre loci. For instance, we have an argument, which we
do not reproduce here, based on the theory of foci of planes in P4 (see [3]), to the
e¨ect that S1�X � is a ®nite set if X is a curve. Is it always the case that Sm�X � is a
®nite set if X is a curve?
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