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Maximally homogeneous nondegenerate CR manifolds
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Abstract. We prove that a maximally homogeneous nondegenerate CR manifold is standard. If
it is compact, then it is a real projective manifold.

Introduction

An almost CR manifold is a smooth paracompact manifold M endowed with a partial
almost-complex structure (H,J), where H is a subbundle of its (real) tangent bundle
TM (the analytic tangent bundle of M), and J : H — H a smooth fiber preserving
bundle isomorphism (the almost-complex structure of M ), with J> = —id and

(X, Y] - [JX,JY)|e 6" (M,H) YX,Ye®%" (M, H).

Here ¥ (M, H) denotes the space of smooth sections of H. The real rank r of H is
even; n = r/2 is the CR-dimension of the manifold M and k = dim M — 2n its CR-
codimension. The almost CR manifold M is said to be nondegenerate at x € M if for
every X € ¢ (M, H) with X, # 0 there exists Y € ¢ (M, H) such that [X, Y], ¢ H.,
and nondegenerate if M is such at every point.

To the (nonintegrable) distribution Z_; = ¥* (M, H), we associate a sequence
of linear spaces of smooth vector fields {0} =%y c%_<c --- €« Z_, < ---, with
Dy =D _pi1+[Z-1,2_p11] if p=2. This gives, at each point x € M, a graded
Lie algebra m(x) = (—Dp<0 g,(x), where g,(x) = (2,),/(Zp+1), for p <0 and the Lie
commutator in m(x) is obtained from the commutator of vector fields by passing to
the quotients (see e.g. [11]). The almost-complex structure J of M defines a complex
structure J on g_,(x), such that [/, X,J, Y] = [X, Y] for every X, Y € g_(x).

We say that M is of finite type (in the sense of Bloom—Graham) at x e M if
dimg m(x) = dimg M, and regular of type m if moreover all m(x) for x e M are
isomorphic to a fixed pseudocomplex graded Lie algebra m = @p <0 9 Pseudocom-
plex means that a complex structure Jy, is given on g_,, such that [/, X,J, Y] =
[X,Y] forevery X, Y eg_;.

In [11], N. Tanaka constructed the maximal transitive pseudocomplex prolonga-
tion g = g(m) = @pez g, of m, which is unique modulo isomorphisms (and that we
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called in [5] the Levi—Tanaka algebra of m). The elements of g, are required to define
0-degree derivations of m which commute with J,, on g_;. He proved that dimp g <
oo if and only if m is nondegenerate (i.e. if [X,g_;] # 0 when X € g_, is # 0). Under
this assumption, he showed that for an almost CR manifold M of type m, the group
of CR automorphisms of M is a Lie group of dimension less than or equal to the
dimension of the Levi-Tanaka algebra g of m.

We call a nondegenerate CR manifold M of type m maximally homogeneous if its
group of CR automorphisms has dimension equal to dimpg g(im).

In [5] we associated to every finite-dimensional Levi—Tanaka algebra g = (‘Bpez 9,
a homogeneous CR manifold S = S(g) that we called standard: S = G/G,, where G
is the connected and simply connected Lie group having Lie algebra g and G, the
(closed) analytic Lie subgroup of G with Lie algebra g, = @pZO g,- In particular, S
is simply connected and maximally homogeneous.

In this paper we prove that a maximally homogeneous nondegenerate CR mani-
fold M, regular of type m, is CR-diffeomorphic to the standard one associated to the
prolongation g of n.

The characterization of these manifolds extends the results for CR manifolds of
hypersurface type (i.e. with CR-codimension equal to one) obtained by Yamaguchi
in [13] to the case of CR manifolds of arbitrary CR-codimension, and is a CR ana-
logue of classical results on manifolds with maximal groups of isometries in Rieman-
nian geometry (cf. e.g. note 10 to [3], or [4]).

We shall consider the compact case first, and next derive the general result using
the Mostow fibration obtained in [8]. Note that the classification of semisimple Levi—
Tanaka algebras of [6] gives because of [8] a classification of the compact standard
CR manifolds and therefore, by the result proved here, of all compact maximally
homogeneous nondegenerate CR manifolds.

1 Definitions and notation

By a graded Lie algebra we mean a Z-graded Lie algebra over R with dimg g, < o0
for all p € Z. We say that g is:

* fundamental if g, = 0 forp > O and g, | = [gp, g_] forallp < —1;
- nondegenerate if [X,g_;] #0forall0 # X eg_;;

« characteristic if the center of g, contains a characteristic element E, i.e.
[E, X] =pX forall Xeg, peZ;

+ transitive if [X,g_,] # 0 forall 0 # X e (D), 9,3

« pseudocomplex if an element J € Homg(g_,,g_,) is given such that

[JX,JY]=[X,Y] VX,Yegq

J?=_id d
1dg, an {[A,JX] =J[4,X] VAeg,VXeg .
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A transitive pseudocomplex graded real Lie algebra g = @pel g, is called a Levi—
Tanaka algebra if its subalgebra m(g) = @p <0 9p 18 fundamental, and g is maximal
in the class of transitive pseudocomplex graded real Lie algebras a with m(a) =
@p _09 = m(g). Note that Levi-Tanaka algebras and semisimple graded Lie alge-
bras are characteristic.

Given a characteristic graded Lie algebra a = @pez a,, we denote by G = G(a)
the connected and simply connected Lie group having Lie algebra a, and by
G, = G, (a) the analytic subgroup of G having Lie algebra a, = @pzo a,. Then we

define the standard manifold S = S(a) associated to a to be the homogeneous space
S=G/G,.

Note that G, is closed in G since it is the connected component of the identity of the
normalizer Ng(a;) of ai in G.

For simplicity we shall assume that all manifolds considered in the following are
connected.

2 Compact standard CR manifolds

In [8] we showed that the standard CR manifold S = G/G,, associated to a finite-
dimensional Levi—-Tanaka algebra g = (—Dpe z 9p» 1s compact if and only if g is semi-
simple. For the application to the general case, we need however to consider in this
section a slightly more general situation. Namely, we shall assume that g is a finite-
dimensional semisimple pseudocomplex fundamental graded Lie algebra (we drop
the requirement that g is nondegenerate). Also in this case the homogeneous mani-
fold G/G; is compact.

Denote by G’ the adjoint group of the Lie algebra g and by G, the analytic sub-
group of G’ generated by g, = @pZO g,- We consider the homogeneous space S’ =
G'/G'. endowed with its natural CR structure: the covering homomorphism G — G’
of the connected and simply connected Lie group G having Lie algebra g onto G’
defines a CR covering map S — S’. We rehearse the construction of the CR structure
of S’ (see 8] for the analogous discussion of the CR structure of S). We shall use the
same letter J for the complex structure on g_, and the partial almost-complex struc-
ture of S’. Let 7 : G’ — S’ be the projection onto the quotient and 0 = n(e) = G/, the

image of the identity e of G'. With 91y = @WA g, We set:

H, =m.(8_1)); (1)
Jn(X)=m(JX_1) VX =Y X,eq ,.X,€q, 2)
p=-1

and, for x = n(g) = gG € S', with g e G,

H, = g.H,, (3)
J(g:(X)) = g.(JX) VX € H,. 4)
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This is a consistent definition: indeed, for g € G’ , we have:

Adgr g(8-1)) = 8-1)» (5)
7.(Adg g(JX)) = m.(JX) VX eq . ()

Using Corollary 2.5 of [6], we fix a minimally compact Cartan subalgebra ) of g
contained in g,. Let g = f @ p be a Cartan decomposition of g, where f is a maximal
compact subalgebra of g, and hNp =D, a maximal Abelian subalgebra contained
in p. Denote by X < b the system of (restricted) roots associated to the pair (g, b,). It
is possible to fix an order of X such that

=D > Dy, (7
A€X >0
>0
where g* = {X € g|[4,X] = A(4)X VA4 €b,}. Then we have the Iwasawa decompo-
sition

g=t®h, ®n". (8)

Let N* be the analytic subgroup of G’ generated by n™. It acts on S’ by restriction
of the action of G’. Note that the N* orbit of 0 = G/, reduces to {0o}. We have the
following:

Lemma 2.1. The manifold S’ is a finite union of N* orbits, which are topologically
Euclidean. There is a single open Nt orbit, which is dense in S'; all other Nt orbits
have a CR-dimension which is strictly smaller than that of S’. Moreover, their tangent
spaces intersect the analytic tangent space H of S’ in J-invariant subspaces.

Proof. We use the generalized Bruhat decomposition of G’ (see Theorem 8 of [10]). It
yields a decomposition of S” into N* orbits V;, = N*wG'. for w belonging to a finite
subset of the normalizer Nk (b)) of the subalgebra b, in the analytic subgroup K of G’
generated by f; these orbits are topologically Euclidean and give a cell decomposition
of S’. Exactly one of them is open and dense (see e.g. Proposition 1.2.4.10 of [12]).
Note that an orbit having the same CR-dimension as S’ is open, because S’ is of finite
type.

We consider now an orbit V,,, for a fixed w e NV, K(I)p), and we show that the inter-
section between the tangent space TV, to V, at n(w) and Hy,) is J-invariant.
Notice that

T Vi N Hry = (9(-1) N Adgr w (")) /(g NAdg w™! (nT)). 9)

Because g is semisimple, the almost-complex structure J on g_ is the restriction of an
inner derivation ady J for a J € gy; in fact, J € N (cf. Theorem 2.4 and Corollary
2.5 of [6]). We need to prove that
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X €9y, Adg w(X) e " = Adg w([J, X]) e n*. (10)

We have
0 = Adg w([J,b,)) = [Adg w(J),Adg w(b,)] = [Adg w(J),b,], (11)

and therefore Adg w(J) belongs to the centralizer «(h,) of b, in T. Because ct(b,) @
b, = g°, from (7) we obtain [¢;(h,),n*] = n*, and therefore

Adg w([J, X]) = [Adg: w(J), Adg w(X)] e n*. (12)

By Lemma 2.1 the manifold S’ is the union of an open dense simply connected subset
and of finitely many locally closed submanifolds of S’ of codimension greater than
one. Then we obtain (see e.g. Proposition 12.4 of Chap. VII of [2]):

Proposition 2.2. The manifold S’, constructed above, is simply connected and therefore
diffeomorphic to the standard one S = G/G..

Remark 2.3. The normalizer Ng:/(g,) of g, in G’ is connected, and thus coincides
with G',. In particular, g, is equal to its normalizer in g (the action of G’ on S’ is asy-
static, according to the definition of [9]) and is an algebraic Lie subalgebra of g.

For standard CR manifolds associated to Levi-Tanaka algebras we obtain the
following

Corollary 2.4. Let g = @p cz 9y be a semisimple Levi-Tanaka algebra and G the
connected and simply connected Lie group having Lie algebra g. Then every connected
G-homogeneous almost CR manifold regular of type m = (—Dp <09 is CR-diffeomor-
phic to the standard CR manifold. In particular, the almost CR manifold S', con-
structed as above starting now from a Levi-Tanaka algebra, is CR-diffeomorphic to
the standard CR manifold S.

Proof. By [8] every connected m-regular G-homogeneous almost CR manifold M is
covered by the standard one. Then Lemma 2.1 provides a finite cell decomposition of
M with no cells of dimension dimg M — 1. As in Proposition 2.2, we conclude that M
is simply connected. This completes the proof of the corollary.

Now we have the following

Theorem 2.5. The group of CR-automorphisms of a compact standard CR manifold
S = G/Gy associated to a Levi—Tanaka algebra g has trivial center and its connected
component of the identity is isomorphic to the adjoint group G’ of g.

There exists a G'-equivariant (and G-equivariant) projective embedding of every
compact standard CR manifold S = G/G, = S"' = G'/G!,.
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Proof. The first statement of the theorem follows from Theorem 4.4 of [5].

The manifold S’ is real projective by Theorem 10 of [10]. To describe the G'-
equivariant complex projective embedding of S’, we follow the construction in §4.3 of
[5]. Let g be the complexification of the semisimple Levi-Tanaka algebra g and let
q= (—Bp>71 q, denote the complex Lie subalgebra of g defined by

13
{X+vV-1UX|Xeg_ ,} ifp=-1. (13)

q =
Let G be the adjoint group of g and Q the analytic subgroup of G generated by q.
Then Q is parabolic and # = G/Q is a flag manifold; in particular it is complex
projective. We have a natural inclusion G’ — G, yielding the CR-immersion

S=8'=6"/6" %G /(6 NQ) 7. (14)

Then ¢ is a covering map and, by Proposition 2.2, is a CR diffeomorphism; hence the
map S’ — Z is a generic CR embedding (i.e. with dim S’ — CR-dim S’ = dim¢ 7).

Remark 2.6. We already noted that G’ is the connected component of the identity in
the group of CR-automorphisms of S = S’. In general this is not connected but it has
a finite number of connected components (it follows from [1], Theorem 4.1 of Chap-
ter 2). For example, if S is the CR quadric associated to g = su(p + 1, p + 1), then
the group of CR-automorphisms of S is isomorphic to the projective conformal
group PCU(p+1,p+ 1), which has two connected components; the connected
component of the identity is isomorphic to PSU(p + 1, p + 1), i.e. to the quotient of
SU(p + 1, p + 1) by its center.

3 The general case

We have the following:

Theorem 3.1. A maximally homogeneous nondegenerate CR manifold, regular of type
m=w, (9, is CR diffeomorphic to the standard CR manifold S associated to the
maximal pseudocomplex prolongation g of m.

In particular, the group of CR-automorphisms of S has trivial center and its con-
nected component of the identity is isomorphic to the adjoint group of g.

Proof. Using the construction of the tower of principal fibrations given in [11], we
obtain that a maximally homogeneous nondegenerate CR manifold M is homoge-
neous, and hence regular.

The group of its CR-automorphisms is a Lie group having Lie algebra isomorphic
to the maximal transitive pseudocomplex prolongation g of its type m (it follows
from Theorem 10.2 of [7]).
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By Theorem 5.2 of [8], we have a CR Mostow fibration of M over a compact CR
manifold B, which admits a CR universal covering B — B by the Cartesian product
B of two compact manifolds, one being a nondegenerate standard CR manifold and
the other one a Hermitian symmetric space. Note that we have a sequence of cover-
ing maps B — B — B’, where B’ is constructed as in section 2 from a pseudocomplex
fundamental graded Levi subalgebra of g (see Theorem 1.1 of [8]). By Proposition 2.2
the covering map B — B’ is injective and therefore B is homeomorphic to B, and thus
simply connected. Then we have obtained that M is simply connected and therefore
standard.

The last statement follows then from Theorem 4.4 of [5].
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