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Abstract. Generating sets of cardinality 2n are constructed for the unitary dual polar space
DU�2n� 1; q2� and the elliptic orthogonal dual polar space DOÿ�2n� 2; q�. It is shown that
the elliptic dual polar space DOÿ�2n� 2; q� has an embedding into PG�2n ÿ 1; q2� which is
necessarily relatively universal. By a theorem of Kasikova and Shult ([9]) we conclude that this
embedding is absolutely universal. A survey is included summarizing current knowledge of the
generating rank and universal embedding spaces of dual polar spaces.
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1 Introduction, de®nitions and notation

This paper is a contribution to the program of determining the universal projective
embeddings and the generating ranks of the dual polar spaces, an undertaking which
is now nearly complete with the recent a½rmative answer to the Brouwer conjecture
for the dual polar spaces of symplectic type over F2 by Paul Li ([10]). Before proceed-
ing to our results we begin with some basic de®nitions and notation.

1.1 Graphs, incidence systems, generation and embeddings. By a graph we mean a set
P whose elements are called vertices together with a symmetric, antire¯exive relation
@ referred to as adjacency. The pairs fp; qg from P with p@ q are called edges. A
path between two points p; q A P is a sequence p � p0; p1; . . . ; pd � q where pi @ pi�1

for each i � 0; 1; . . . ; d ÿ 1. The length of such a path is the number d of adjacencies.
The distance d�p; q� between two points p; q A P is the length of a minimal path
joining them (which we call a geodesic), if a path exists, otherwise d�p; q� �y. The
diameter of �P;@� is supfd�p; q� j p; q A Pg.

An incidence system is a triple �P;L; I� consisting of a set P whose elements are
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called points, a set L whose members are called lines, and a symmetric relation I H
�P�L�U �L�P�. If p A P, L A L and �p;L� A I then we say p is incident with or
lies on L. �P;L; I� is said to be a linear incidence system or a point-line geometry if
two points are incident with at most one line. In this case we may identify each
line with its shadow, namely the set of points with which it is incident, and replace I

with the symmetrization of the relation A and then we will write �P;L� in place of
�P;L; I�. The collinearity graph of a linear incidence system �P;L� is the graph
�P;@� where p@ q for p; q A P if and only if p and q are collinear. For a point p

we will denote the union of all lines on p by p?. Thus, p? contains p and all points
which are collinear with p. G is said to be nondegenerate if for no point p it is the case
that p? � P.

By a subspace of a point-line geometry G � �P;L� we mean a subset X of the
point set P with the property that if a line meets X in at least two points then the line
is entirely contained in X. Clearly the intersection of subspaces is a subspace. Con-
sequently, for an arbitrary subset X of P we can de®ne the subspace generated by X

to be the intersection of all subspaces containing X and will denote it by hXiG.
This is the unique minimal element (with respect to the ordering under inclusion)
among the collection of subspaces which contain X. We will say that a subset X
generates P if hXiG � P. We de®ne the generating rank of G � �P;L�, gr�G�, to be
minfjX j : hXiG � Pg. By a singular subspace we shall mean a subspace which is also
a clique in the collinearity graph.

Let G � �P;L� be a point-line geometry. By a projective embedding of G we mean
an injective mapping e : P! PG�V�, V a vector space over some division ring, such
that

(i) the subspace of V spanned by e�P� is all of V; and

(ii) for L A L; e�L� is a full line of PG�V�.
We say that G is embeddable if some projective embedding of G exists. Assume that

e : P! PG�V� and e 0 : P! PG�V 0� are embeddings of G. A morphism from e to
e 0 is a mapping C : PG�V� ! PG�V 0� induced by a semi-linear mapping f : V !
V 0 such that C � e � e 0. Let e : P! PG�V� be an embedding of G. An embedding
ê : P! PG�V̂� is said to be universal relative to e if there is a morphism Ĉ : ê! e

such that for any other morphism C from an embedding e 0 of G to e, Ĉ factors
through C, that is, there is a morphism g : ê! e 0 such that g � Ĉ � C. An embed-
ding e : P! PG�V� is relatively universal if it is universal relative to itself. Finally,
an embedding e of G is absolutely universal if it is universal relative to every embed-
ding of G. This means that e is a universal source of the category of G-embeddings.

It is an immediate consequence of these de®nitions that if e : G! PG�V� is an
embedding then dim V W gr�G� and, if dim V � gr�G� then e is relatively universal.
In this case a generating set X with jX j � gr�G� is called a basis (cf. [7]).

1.2 Polar spaces and dual polar spaces. For the purposes of this paper a polar space

is a point-line geometry �P�;L�� which satis®es
(P) For any point-line pair �p;L� A P� �L�; p is collinear with one or all the points
of L and
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(F ) There is an integer n, called the rank of �P�;L�� such that any sequence X0 H
X1 H � � � HXm of distinct singular subspaces satis®es mW n.

A polar space of rank two is called a generalized quadrangle. If a generalized
quadrangle �P�;L�� is ®nite then it is said to be regular with parameters �s; t� if every
line contains s� 1 points and every point lies on t� 1 lines.

Recall, if �P�;L�� is a nondegenerate polar space then the associated dual polar

space has as its points, P, the collection of maximal singular subspaces of the polar
space and as lines, L, the shadows of the next to maximal singular subspaces.

The polar and dual polar spaces of type Oÿ�2n� 2; q�. An elliptic quadric of rank n

(over a ®nite ®eld Fq) may be de®ned as follows: Let aX 2 � bX � c be an irreducible
quadratic over Fq (such quadratics always exist by an easy counting argument).
Let V be a �2n� 2�-dimensional vector space with basis v1;w1; v2;w2; . . . ; vn;wn; vn�1;
wn�1 and de®ne the mapping Q : V ! F by

Q

�Xn�1

i�1

Xivi � Yiwi

�
�
Xn

i�1

XiYi � �aX 2
n�1 � bXn�1Yn�1 � cY 2

n�1�:

This is an elliptic quadratic form on V. Up to isometry there is only one such space.
A subspace U is said to be singular if Q�U� � f0g. For the form de®ned above there
exist subspaces U of dimension n such that Q�U� � f0g, for example hv1; v2; . . . ; vni,
but there do not exist such subspaces of dimension n� 1. The isometry group of
�V ;Q�,

G�V ;Q� � fT : V ! V jQ�Tv� � Q�v�; Ev A Vg

is transitive on such subspaces. We say the singular rank of �V ;Q� is n. We refer to
the singular one spaces as singular points and the singular two spaces as singular lines.
Let P� be the collection of all singular points and L� the collection of all singular
lines. Then �P�;L�� is the elliptic polar space of singular rank n which we denote by
Oÿ�2n� 2; q�. The associated dual polar space will be denoted by DOÿ�2n� 2; q�.

The polar space and dual polar spaces of type U�k; q2�. Let V be a vector space of
dimension k X 4 over Fq2 with basis v1; v2; . . . ; vk and let t : Fq2 ! Fq2 be the auto-
morphism given by t�x� � xq. We will usually denote images under this map by the
``bar'' notation: t�x� � xq � x. Now let h : V � V ! Fq be the non-degenerate her-
mitian form given by

h

�Xk

i�1

Xivi;
Xk

i�1

Yivi

�
�
Xk

i�1

XiY i:

A subspace U is isotropic if h�U ;U� � f0g. The maximal dimension of an isotropic
subspace is k

2

� �
and all such subspaces are conjugate under the action of G�V ; h� �

fT : V ! V j h�Tv;Tw� � h�v;w�; Ev;w A Vg. Let P� be the collection of isotropic
one spaces and L� the collection of isotropic two spaces. Then �P�;L�� is the unitary
polar space U�k; q2�. The associated dual polar space will be denoted by DU�k; q2�.
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In section two of this paper we prove that the elliptic dual polar space
DOÿ�2n� 2; q� has an absolutely universal embedding of dimension 2n. In the
course of proving this we will show that this geometry can be generated by 2n points.
In light of this, the geometry DOÿ�2n� 2; q� has a basis in the sense de®ned above.
In section three we demonstrate that the unitary dual polar spaces in odd dimension,
DU�2n� 1; q2�, are not embeddable in the sense de®ned above. Our main result in
this section is that this geometry can be generated by 2n points. We think that this is
best possible but at this time are unable to prove this assertion. In section four we will
show that any subgraph of the collinearity graph of the geometries DU�2n� 1; q2� or
DOÿ�2n� 2; q� which is isomorphic to the n-hypercube generates the geometry and,
moreover, that the respective automorphism groups of the geometries are transitive
on such subgraphs. In section ®ve we conclude with a survey of our current knowl-
edge on absolutely universal embeddings and generating sets for dual polar spaces.

2 Generation and embedding of the elliptic dual polar spaces

In this section we will show that the elliptic dual polar space DOÿ�2n� 2; q� can be
generated by 2n points. We then demonstrate that there exists an embedding into
PG�X� where X is a space of dimension 2n and prove that this embedding is abso-
lutely universal.

2.1 A Generating Set for DOÿ�2n� 2; q�. Before proceeding to the speci®c result for
DOÿ�2n� 2; q� we prove a general lemma about generation of a generalized quad-
rangle with parameters �s; t� when s > t.

(2.1) Lemma. Let G � �P;L� be a generalized quadrangle with parameters �s; t�
where s > t. Then G is generated by the four points of any circuit.

Proof. Let �a; b; c; d; a� be a 4-circuit so that M1 � ab and M2 � cd are opposite
lines. Let X � fL1;L2; . . . ;Ls;Ls�1g be the collection of all lines joining a point of

M1 to a point of M2. Then 6s�1

i�1 Li H ha; b; c; diG. Choose an arbitrary point x not
in 6Li. Then for each Li, there is a unique line on x meeting Li. This produces a
mapping f : X!Lx, the collection of lines on x. Since s� 1 > t� 1, by the pigeon-
hole principle this map cannot be injective. Assume that f �Li� � f �Lj� and set y �
Li V x?, z � Lj V x?. Then xy � xz � yz. In particular, x A yz. As y; z A ha; b; c; di it
follows that x A ha; b; c; di.

Now let V be a �2n� 2�-dimensional vector space over Fq and Q an elliptic form
of rank n on V. Let G� � �P�;L�� be the elliptic polar space of singular points and
singular lines in V and let G � �P;L� be the associated dual polar space. Recall that
we may identify P with the maximal singular subspaces of V. For vectors v;w A V
de®ne �v;w� � Q�v� w� ÿQ�v� ÿQ�w�, the symmetric bilinear form associated with
Q. For a vector w we will let w?Q � fu A V : �w; u� � 0g and for a subspace W,
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W?Q � 7
w AW

w?Q :

Now let W be a (totally) singular subspace of V. Set U�W� � fp A P : W H pg.
This is a convex subspace of G. Now the quotient space W �W?Q=W can be made
into an elliptic space of dimension �2n� 2ÿ 2d� where dim W � d by de®ning
Q�u�W� � Q�u� for a vector u A W?Q . Moreover there is a one-to-one correspon-
dence between the elements of U�W� and the maximal singular subspaces of W . This
correspondence is an isomorphism of geometries and in this way we see that U�W� is
isomorphic to DOÿ�2n� 2ÿ 2d; q� where dim W � d. In particular, for a singular
point v of V, U�v� is isomorphic to DOÿ�2n; q�. Our main result of this subsection,
that DOÿ�2n� 2; q� can be generated by 2n points, will be an immediate consequence
of the following lemma:

(2.2) Lemma. Let x; y A P�, that is, singular points of V, and assume that �x; y�0 0.
Then hU�x�;U�y�iG � P.

Proof. We proceed by induction on nX 2. Suppose ®rst that n � 2. In this case
fU�x�;U�y�g is a pair of opposite lines in the generalized quadrangle DOÿ�6; q�G
U�4; q2� which has parameters �q2; q� and therefore by (2.1) it follows that hU�x�;
U�y�iG � P.

Now assume that the result holds for n � k X 2 and we must show that it holds
for n � k � 1. So assume that �V ;Q� is an elliptic orthogonal space of dimension
2�k � 1� � 2 � 2k � 4 with k X 2 and let x; y be singular points of V ; �x; y�0 0. We
must show that hU�x�;U�y�iG � P. It su½ces to show that for every singular point
z in V that U�z�H hU�x�;U�y�iG. Suppose ®rst that z A x?Q V y?Q . As previously
noted, U�z� is isomorphic to DOÿ�2k � 2; q�. The subspaces U�hz; xi� and U�hz; yi�
satisfy the hypotheses of the lemma and therefore by our inductive hypothesis

U�z� � hU�hz; xi�;U�hz; yi�iG H hU�x�;U�y�iG:

We have therefore shown that for every z A x?Q V y?Q , U�z�H hU�x�;U�y�iG.
Now suppose that z1; z2 A x?Q V y?Q are singular points of V and �z1; z2�0 0 and

z A z
?Q

1 V z
?Q

2 is a singular point. Then by the above argument

U�z�H hU�z1�;U�z2�iG

and in turn it follows that

U�z�H hU�x�;U�y�iG:

Suppose now that z is any singular point, z0 x; y. Then z?Q V x?Q V y?Q is a
hyperplane of x?Q V y?Q . x?Q V y?Q has rank k X 2 and consequently there must be
singular points z1; z2 A z?Q V x?Q V y?Q , �z1; z2�0 0. It now follows from the above
argument that U�z�H hU�x�;U�y�iG and the proof is complete.
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We can now prove our main theorem of this subsection:

(2.3) Theorem. For nX 2, DOÿ�2n� 2; q� can be generated by 2n points.

Proof. We prove this by induction on nX 2. When n � 2, DOÿ�6; q� is a generalized
quadrangle with parameters �q2; q� and therefore can be generated by 4 points by
(2.1). Now assume that n > 2 and that DOÿ�2n; q� can be generated with 2nÿ1 points.
Let x; y be non-orthogonal singular points in V. By our inductive hypothesis each of
U�x�, U�y�, which are isomorphic to DOÿ�2n; q�, can be generated by 2nÿ1 points.
By (2.2) P � hU�x�;U�y�iG and therefore P can be generated by 2� 2nÿ1 � 2n

points.

2.2 An embedding for DOÿ�2n� 2; q�. Let V ;Q be as in the introduction. Let ~V �
Fq2 nFq

V . De®ne a scalar multiplication of Fq2 on ~V as follows:

a

�Xm

i�1

bi n zi

�
�
Xm

i�1

�abi�n zi:

In this way ~V becomes a vector space over Fq2 . We identify vectors v A V with 1n
v A ~V . Then the basis v1;w1; v2;w2; . . . ; vn�1;wn�1 is a basis for ~V . We may extend Q

to a quadratic form ~Q over Fq2 on ~V by extension of scalars as follows: for Xi;
Yi A Fq2 set ~Q�Pn�1

i�1 �Xivi � Yiwi�� �
Pn

i�1 XiYi � aX 2
n�1 � bXn�1Yn�1 � cY 2

n�1. Over
Fq2 the polynomial aX 2 � bX � c has two distinct roots and consequently there

now exist singular subspaces of dimension n� 1. This means that � ~V ; ~Q� is a hyper-
bolic orthogonal space. Let ~Sk denote the collection of totally singular subspaces of
~V of dimension k. Then the following is well known:

(i) The collection ~Sn�1 divides into two classes ~S�n�1;
~Sÿn�1 where for subspaces U1,

U2 in the same class, dim�U1=�U1 VU2� � dim�U2=U1 VU2� is even,

(ii) Every element of ~Sn lies in one element of ~S�n�1 and one element of ~Sÿn�1,
(iii) Every element of ~Snÿ1 is contained in q2 � 1 elements in ~S�n�1 and ~Sÿn�1 (note

that it is q2 � 1 since we are over the ®eld Fq2 .)
The incidence geometry � ~S�n�1;

~Snÿ1� is a strong parapolar space commonly re-
ferred to as the ``half spin geometry'' and denoted by Dn�1;n�1�q2�. It is known
that this geometry has an absolutely universal embedding of dimension 2n ([14])
which is an irreducible module for the isometry group G� ~V ; ~Q�G SO��2n� 2; q2�G
Dn�1�q2�. We remark that this module remains irreducible when restricted to G�V ;
Q�G SOÿ�2n� 2; q�G 2Dn�1�q�. We use this embedding to construct an embedding
for DOÿ�2n� 2; q� as follows.

Let e : ~S�n�1 ! PG�X �, dim X � 2n, be the absolutely universal embedding of the
half spin geometry. We remark that this is an irreducible module for the isometry
group of � ~V ; ~Q� which is the orthogonal group SO��2n� 2; q2�GDn�1�q2�. Now

let f : P! ~S�n�1 be the following map: An element p of P is a singular subspace of
V of dimension n. The span of such a subspace in ~V is still a singular subspace of
dimension n: This is clearly true of hv1; v2; . . . ; vni. However, G�V ;Q�WG� ~V ; ~Q�
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and the former is transitive on the singular n-dimensional subspaces of V. As stated
in (ii) above such a subspace lies in a unique member of ~S�n�1. Clearly, f �p� is this
unique subspace. In a similar way, a line L A L corresponds to a singular subspace
W of V of dimension nÿ 1 and spans in ~V a singular subspace of the same dimen-
sion. Note that there are q2 � 1 elements of P which are incident with W and there-
fore the map induced by f from L to fp 0 A ~S�n�1 : p 0IWg is bijective. It now follows
that if we set a � e � f and X1 � ha�p� : p A Pi then a : P! PG�X1� is an embed-
ding. However, as noted above the isometry group G�V ;Q�G SOÿ�2n� 2; q� of
�V ;Q� acts irreducibly on the space X. Since X1 is an invariant subspace it follows
that X1 � X . We have therefore proved:

(2.4) Theorem. The dual polar space DOÿ�2n� 2; q� has an embedding a into a pro-

jective space PG�X� with dim X � 2n.

Combining this with (2.3) we may now prove:

(2.5) Theorem. The embedding a of DOÿ�2n� 2; q� into PG�X � with dim X � 2n is

absolutely universal.

Proof. By (2.3) DOÿ�2n� 2; q� can be generated by 2n points; thus any embedding
into PG�2n ÿ 1; q� is relatively universal. Now the quads of DOÿ�2n� 2; q� are the
unitary quadrangles U�4; q2� (H3�q2� in the notation of Thas). These quadrangles
have an absolutely universal embedding by ([13]). It follows by a result of Kasikova
and Shult ([9]) that any embedding of DOÿ�2n� 2; q� into PG�2n ÿ 1; q� is abso-
lutely universal.

3 A generating set for DU�2n� 1; q2�
Now let V be a �2n� 1�-dimensional vector space over Fq2 and h a non-degenerate
hermitian form. Let G� � �P�;L�� be the unitary polar space of isotropic points and
(totally) isotropic lines in V and let G � �P;L� be the associated dual polar space.
Recall that we may identify P with the maximal (totally) isotropic subspaces of V.
For a vector w we set w?h � fw A V : h�w; v� � 0g and for a subspace W of V,

W?h � 7
w AW

w?h :

As in the orthogonal case, for W a (totally) isotropic subspace of V we set U�W� �
fp A P : W H pg. This is a convex subspace of G. Now the quotient space W �
W?h=W can be made into a unitary space of dimension �2n� 1ÿ 2d� where
dim W � d by de®ning h�u�W ; v�W� � h�u; v� for vectors u; v A W?h . Moreover
there is a one-to-one correspondence between the elements of U�W� and the maximal
singular subspaces of W . This correspondence is an isomorphism of geometries and
in this way we see that U�W� is isomorphic to DU�2n� 1ÿ 2d; q2� where dim W �
d. In particular, for an isotropic point w of V, U�w� is isomorphic to DU�2nÿ 1; q2�.
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Our main result, that DU�2n� 1; q� can be generated by 2n points, will be an im-
mediate consequence of the following lemma:

(3.1) Lemma. Let x; y A P�, that is isotropic points of V and assume that h�x; y�0 0.
Then hU�x�;U�y�iG � P.

Proof. We proceed by induction on nX 2. Suppose ®rst that n � 2. In this case U�x�,
U�y� are two opposite lines in the generalized quadrangle DU�5; q2� which has pa-
rameters �q3; q2� and therefore by (2.1) it follows that hU�x�;U�y�iG � P.

Now assume that the result holds for n � k X 2. We must show that it holds for
n � k � 1. So assume that �V ; h� is a unitary space of dimension 2�k � 1� � 1 �
2k � 3 with k X 2 and let x; y be isotropic points of V ; �x; y�0 0. We must show that
hU�x�;U�y�iG � P. It su½ces to show for z an arbitrary isotropic point in V that
U�z�H hU�x�;U�y�iG.

First suppose that z A PGhx; yi that is, z is an isotropic point on the hyperbolic
line of V spanned by x and y. Denote the set of isotropic points in hx; yi by g. Now
for any element p A U�x�, p? VU�z� is a unique point for each z0 x, z A g and the set
of all these points is a line. It therefore follows that 6

z A g
U�z�H hU�x�;U�y�iG.

Let us now assume that z B g and z A x?h V y?h . As previously noted, U�z� is
isomorphic to DU�2k � 1; q2�. The subspaces U�hz; xi� and U�hz; yi� satisfy the
hypotheses of the lemma and therefore by our inductive hypothesis

U�z� � hU�hz; xi�;U�hz; yi�iG H hU�x�;U�y�iG:

We have therefore shown that for every z A x?h V y?h , U�z�H hU�x�;U�y�iG.
We can now proceed as in the elliptic case. Suppose that z1; z2 A x?h V y?h are iso-

tropic points of V and �z1; z2�0 0 and z A z?h

1 V z?h

2 is a singular point. Then by the
above argument

U�z�H hU�z1�;U�z2�iG

and, in turn, it follows that

U�z�H hU�x�;U�y�iG:

Assume now that z is any isotropic point, z B g. Then z?h V x?h V y?h is a hyperplane
of x?h V y?h . x?h V y?h has rank k X 2 and consequently there must be isotropic
points z1; z2 A z?h V x?h V y?h , �z1; z2�0 0. It now follows from the above argument
that U�z�H hU�x�;U�y�iG and the proof is complete.

We can now prove our main theorem:

(3.2) Theorem. For nX 2, DU�2n� 1; q� can be generated by 2n points.

Proof. The proof is exactly like the elliptic case.
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It is well known that the generalized quadrangle DU�5; q2� is not embeddable.
Since these are quads of the dual polar space DU�2n� 1; q2� it follows that in general
DU�2n� 1; q2� is not embeddable.

4 Frames for DOÿ�2n� 2; q� and DU�2n� 1; q2�

(4.1) Theorem. Let G � �P;L� be a dual polar space of type DU�2n� 1; q2� or

DOÿ�2n� 2; q� and let D � �P; @ � be its point-collinearity graph. Let H be the class

of all subgraphs of D which are isomorphic to the graph of the n-hypercube and which

are isometrically embedded in D. Then the following hold:

1. The point-vertices of any graph H A H generate the ambient dual polar space as a

geometry.

2. The automorphism group of the geometry acts transitively on H.

Proof. Select two vertices at distance �nÿ 1� in the subgraph H. Since H is isometri-
cally embedded, there are points at distance �nÿ 1� in D. Then the convex subspace
hull of these two points is a dual polar space U�p1� for some polar point. Since U�p1�
is a convex subspace of point-diameter nÿ 1 it must contain the union of all the
geodesics of H connecting the two points and no further vertices of H. Thus, H1 :�
H VU�p1� is an �nÿ 1�-hypercube isometrically embedded in U�p1�. Now let

opp : H ! H;

be the ``opposite'' mapping on H, mapping each vertex to its antipodal vertex at
distance n. Then

H2 :� HnH1 � H
opp
1

is also an isometrically embedded �nÿ 1�-hypercube whose convex subspace hull is
U�p2� for some polar point p2. We claim that U�p1�VU�p2� �q, that is, fp1; p2g is
a 2-coclique in the polar space.

Otherwise, we have U�p1�VU�p2� � U�L� where L is a polar line. Since each
U�pi� has point-diameter �nÿ 1� for each vertex x A HnU�p2�, we have xopp is in
HnU�p1�, and vice versa, so there is a bijection

HnU�p1� ! HnU�p2�:

It follows that H VU�L� is invariant under the opposite map and that forces H V
U�L� �q. Thus Hi HHnU�p3ÿi�, for i � 1; 2. But this forces the absurdity that H

is not connected, since no vertex of U�p1�nU�p2� can be collinear with a vertex of
U�p2�nU�p1� when these two subspaces intersect non-trivially.

Thus we have U�p1�VU�p2� �q. If n � 3 then Hi is a square, and as we have
seen Hi generates U�p2� as a geometry by (2.1). Otherwise we can maintain this
assertion by induction. Thus the subspace generated by H contains both U�p1� and
U�p2� and it is shown by lemmas (2.2), (3.1) that these two generate G.
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It remains to prove the transitivity of the classical groups U�2n� 1; q2� or
Oÿ�2n� 2; q� on H. We take H � H1 UH2 with Hi HU�pi�, i � 1; 2 as in the ®rst
part of the proof. Now let K be any other subgraph in H. Then by taking two ver-
tices at distance �nÿ 1� in K, and forming their convex subspace hull, we may parti-
tion K into two �nÿ 1�-hypercubes K1 and K2, living in opposite subspaces U�q1�
and U�q2�, respectively, as we did for H in the ®rst part of this proof. Now there is
an element in the relevant classical group taking �q1; q2� to �p1; p2� by Witt's theo-
rem, so we may assume from here on that qi � pi for i � 1; 2. Since p1; p2 are non-
orthogonal, the stabilizer in G of �p1; p2� is a classical group of the same type of rank
one less. So by induction it contains an element g taking the isometrically embedded
hypercube K1 to H1 in the subspace U�p1�. Now the mapping f : U�p1� ! U�p2�
which takes each point of U�p1� to the unique point of U�p2� collinear with it is an
isomorphism of point-line geometries commuting with the action of g on both sides.
One sees from the hypercube graph that K2 � f �K1� and that H2 � f �H1�. Thus we
also have K

g
2 � H2, and so K g � H and the transitivity is proved.

5 A survey of embeddings and generation of dual polar spaces

In this section we survey what is known to us regarding the embeddings and genera-
tion of the dual polar spaces. We exclude from this survey dual polar spaces for the
hyperbolic orthogonal spaces since the lines of these geometries have just two points.

5.1 The symplectic dual polar spaces, DSp�2n; q�. We begin with the situation where
the underlying ®eld has more than two elements. Cooperstein ([3]) has completely
determined this situation:

(5.1) Theorem. Assume q > 2. Then the following hold:

(1) The dual polar space DSp�2n; q� has generating rank
2n

n

� �
ÿ 2n

nÿ 2

� �
.

(2) DSp�2n; q� has an absolutely universal embedding and its dimension is equal to its

generating rank.

When a geometry G � �P;L� has three points on a line then there is a standard
construction for an absolutely universal embedding: let V be the space over F2 with
P as basis and let W be the subspace spanned by all x� y� z where fx; y; zg �
L A L. Then V=W with the map x! x�W is the absolutely universal embedding.
Since DSp�2n; 2� has an obvious embedding, the so-called spin embedding, it has a
universal embedding. The dimension of this embedding has been the subject of much
investigation and A. Brouwer of Technical University Eindhoven made the following
conjecture:

(5.2) Conjecture. The dimension of the universal embedding of DSp�2n; 2� is

�2n � 1��2nÿ1 � 1�
3

.
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Brouwer, in unpublished work, demonstrated the truth of this conjecture for nW 4.
In ([8]), Cooperstein and Shult proved that DSp�6; 2� can be generated by 15 points.
In ([4]), Cooperstein constructed generating sets with 57 points for DSp�8; 2� and 187
points for DSp�10; 2�, the latter proving Brouwer's conjecture for n � 5. Cooper-
stein's methods were used to construct a generating set of 716 points for DSp�12; 2�
while Bardoe and A. A. Ivanov were able to show computationally that Brouwer's
conjecture holds in this case and the case for n � 7 as well ([1]). It is not known
whether the generation can be improved to 715. Recently, Brouwer's conjecture has
been settled by Paul Li ([10]) making use of ideas developed by P. McClurg ([11]):

(5.3) Theorem. The universal embedding for DSp�2n; 2� has dimension

�2n � 1��2nÿ1 � 1�
3

.

5.2 The unitary dual polar spaces, DSU�2n; q�. As with the previous discussion we
begin with the situation where the underlying ®eld has more than two elements. The
situation here was completely settled by Cooperstein ([5]):

(5.4) Theorem. Assume q > 2. Then the following hold:

(1) The dual polar space DSU�2n; q2� can be generated by
2n

n

� �
points.

(2) DSU�2n; q2� has an absolutely universal embedding of dimension
2n

n

� �
.

When q � 2 our knowledge is not very complete. We know that there are embed-
dings and since lines have three points there is a universal embedding. A. A. Ivanov
has made the following

(5.5) Conjecture. The universal embedding for DSU�2n; 4� has dimension
4n � 2

3
.

When n � 2, DU�4; 4� is the classical generalized quadrangle Oÿ�6; 2� given by an
elliptic quadric in 6 dimensions and therefore has a 6 dimensional embedding. The
four points of a circuit generate a grid. Any additional point generates a �2; 2� sub-
quadrangle and any further point generates the entire generalized quadrangle. Con-
sequently the 6-dimensional embedding is universal.

The situation for n � 3 is also entirely known with the embedding determined by
Yoshiara, ([15]), and the generation by Cooperstein, ([6]):

(5.6) Theorem. (1) The universal embedding of DU�6; 4� has dimension 22.
(2) DU�6; 4� can be generated by 22 points.

5.3 The orthogonal dual polar spaces, DO�2n� 1; q�, q > 2. We restrict ourselves to
the case q is odd since DSO�2n� 1; 2n� is isomorphic to DSp�2n; 2n� and this case
has been previously discussed. The situation for this geometry is also entirely known.
Independently several groups (Blok±Brouwer [2], Cooperstein±Shult [7], and Ronan±
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Smith [12]) have found generating sets for this geometry, while the universal embed-
ding was determined by Wells ([14]):

(5.7) Theorem. Let q > 2. Then the following hold:

(1) The orthogonal dual polar space DSO�2n� 1; q� can be generated by 2n points.

(2) DSO�2n� 1; q� has an absolutely universal embedding and its dimension is 2n.
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